|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: swin-tiny-patch4-window7-224-bottom_cleaned_data-hpt |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9694041867954911 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swin-tiny-patch4-window7-224-bottom_cleaned_data-hpt |
|
|
|
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0701 |
|
- Accuracy: 0.9694 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 7 |
|
- total_train_batch_size: 56 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.01 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.4307 | 0.99 | 99 | 0.2332 | 0.9227 | |
|
| 0.3425 | 2.0 | 199 | 0.1904 | 0.9404 | |
|
| 0.29 | 3.0 | 299 | 0.1316 | 0.9388 | |
|
| 0.2597 | 3.99 | 398 | 0.1158 | 0.9533 | |
|
| 0.2638 | 4.99 | 498 | 0.0987 | 0.9614 | |
|
| 0.209 | 6.0 | 598 | 0.0802 | 0.9710 | |
|
| 0.1776 | 7.0 | 698 | 0.0838 | 0.9597 | |
|
| 0.1776 | 7.99 | 797 | 0.0787 | 0.9694 | |
|
| 0.1502 | 9.0 | 897 | 0.0797 | 0.9726 | |
|
| 0.1402 | 9.93 | 990 | 0.0701 | 0.9694 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|