update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -60,22 +60,62 @@ The following hyperparameters were used during training:
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.01
|
63 |
-
- num_epochs:
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
|
81 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.9703153988868275
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.1959
|
35 |
+
- Accuracy: 0.9703
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.01
|
63 |
+
- num_epochs: 50
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 0.6532 | 0.99 | 86 | 0.6781 | 0.6345 |
|
70 |
+
| 0.5407 | 2.0 | 173 | 0.5222 | 0.8590 |
|
71 |
+
| 0.4086 | 2.99 | 259 | 0.3595 | 0.8924 |
|
72 |
+
| 0.3449 | 4.0 | 346 | 0.2616 | 0.9184 |
|
73 |
+
| 0.3518 | 4.99 | 432 | 0.2288 | 0.9443 |
|
74 |
+
| 0.308 | 6.0 | 519 | 0.2758 | 0.9425 |
|
75 |
+
| 0.3209 | 7.0 | 606 | 0.3777 | 0.9369 |
|
76 |
+
| 0.284 | 7.99 | 692 | 0.1704 | 0.9555 |
|
77 |
+
| 0.2466 | 9.0 | 779 | 0.1571 | 0.9462 |
|
78 |
+
| 0.3123 | 9.99 | 865 | 0.6492 | 0.9406 |
|
79 |
+
| 0.2827 | 11.0 | 952 | 0.4968 | 0.9406 |
|
80 |
+
| 0.2736 | 11.99 | 1038 | 0.1370 | 0.9592 |
|
81 |
+
| 0.2476 | 13.0 | 1125 | 0.1616 | 0.9499 |
|
82 |
+
| 0.195 | 14.0 | 1212 | 0.1362 | 0.9610 |
|
83 |
+
| 0.2536 | 14.99 | 1298 | 0.1298 | 0.9536 |
|
84 |
+
| 0.2022 | 16.0 | 1385 | 0.7470 | 0.9518 |
|
85 |
+
| 0.2406 | 16.99 | 1471 | 0.1241 | 0.9647 |
|
86 |
+
| 0.2019 | 18.0 | 1558 | 0.1278 | 0.9536 |
|
87 |
+
| 0.2073 | 18.99 | 1644 | 0.1134 | 0.9685 |
|
88 |
+
| 0.1873 | 20.0 | 1731 | 0.6738 | 0.9629 |
|
89 |
+
| 0.2446 | 21.0 | 1818 | 0.1033 | 0.9685 |
|
90 |
+
| 0.1999 | 21.99 | 1904 | 0.1181 | 0.9647 |
|
91 |
+
| 0.1716 | 23.0 | 1991 | 0.1099 | 0.9610 |
|
92 |
+
| 0.175 | 23.99 | 2077 | 0.1064 | 0.9740 |
|
93 |
+
| 0.1962 | 25.0 | 2164 | 0.1174 | 0.9722 |
|
94 |
+
| 0.1943 | 25.99 | 2250 | 1.0625 | 0.9518 |
|
95 |
+
| 0.2044 | 27.0 | 2337 | 0.8419 | 0.9573 |
|
96 |
+
| 0.1835 | 28.0 | 2424 | 0.1112 | 0.9703 |
|
97 |
+
| 0.191 | 28.99 | 2510 | 0.1142 | 0.9685 |
|
98 |
+
| 0.1676 | 30.0 | 2597 | 0.1080 | 0.9647 |
|
99 |
+
| 0.1533 | 30.99 | 2683 | 0.1494 | 0.9647 |
|
100 |
+
| 0.1991 | 32.0 | 2770 | 0.1000 | 0.9703 |
|
101 |
+
| 0.1845 | 32.99 | 2856 | 0.0989 | 0.9740 |
|
102 |
+
| 0.1605 | 34.0 | 2943 | 0.0975 | 0.9685 |
|
103 |
+
| 0.1928 | 35.0 | 3030 | 0.4555 | 0.9629 |
|
104 |
+
| 0.1506 | 35.99 | 3116 | 0.1059 | 0.9703 |
|
105 |
+
| 0.1912 | 37.0 | 3203 | 0.1016 | 0.9647 |
|
106 |
+
| 0.1689 | 37.99 | 3289 | 0.5421 | 0.9666 |
|
107 |
+
| 0.1467 | 39.0 | 3376 | 0.1095 | 0.9647 |
|
108 |
+
| 0.1513 | 39.99 | 3462 | 0.3828 | 0.9703 |
|
109 |
+
| 0.1768 | 41.0 | 3549 | 0.0945 | 0.9703 |
|
110 |
+
| 0.1633 | 42.0 | 3636 | 0.2250 | 0.9592 |
|
111 |
+
| 0.1945 | 42.99 | 3722 | 0.2015 | 0.9685 |
|
112 |
+
| 0.1896 | 44.0 | 3809 | 0.1114 | 0.9666 |
|
113 |
+
| 0.1629 | 44.99 | 3895 | 0.0954 | 0.9666 |
|
114 |
+
| 0.1825 | 46.0 | 3982 | 0.0974 | 0.9740 |
|
115 |
+
| 0.1664 | 46.99 | 4068 | 0.0939 | 0.9703 |
|
116 |
+
| 0.1535 | 48.0 | 4155 | 0.0935 | 0.9722 |
|
117 |
+
| 0.1801 | 49.0 | 4242 | 0.0999 | 0.9703 |
|
118 |
+
| 0.1502 | 49.67 | 4300 | 0.1959 | 0.9703 |
|
119 |
|
120 |
|
121 |
### Framework versions
|