metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnext-large-224-22k-1k-bottomCleanedData
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9977298524404086
convnext-large-224-22k-1k-bottomCleanedData
This model is a fine-tuned version of facebook/convnext-large-224-22k-1k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0067
- Accuracy: 0.9977
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 7
- total_train_batch_size: 56
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2003 | 1.0 | 141 | 0.0628 | 0.9807 |
0.1568 | 2.0 | 283 | 0.0173 | 0.9943 |
0.1499 | 2.99 | 424 | 0.0211 | 0.9898 |
0.1189 | 4.0 | 566 | 0.0140 | 0.9955 |
0.084 | 4.99 | 707 | 0.0105 | 0.9955 |
0.0797 | 6.0 | 849 | 0.0093 | 0.9966 |
0.0781 | 7.0 | 991 | 0.0157 | 0.9921 |
0.1075 | 8.0 | 1132 | 0.0079 | 0.9943 |
0.0718 | 9.0 | 1274 | 0.0075 | 0.9966 |
0.0592 | 9.96 | 1410 | 0.0067 | 0.9977 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3