SoulPerforms's picture
End of training
5ea5878 verified
|
raw
history blame
3.57 kB
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: visual_emotion_classification_vit_base_finetunned
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5125
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# visual_emotion_classification_vit_base_finetunned
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3576
- Accuracy: 0.5125
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 40 | 1.9700 | 0.2625 |
| 2.0074 | 2.0 | 80 | 1.7194 | 0.3688 |
| 1.726 | 3.0 | 120 | 1.5775 | 0.3875 |
| 1.5202 | 4.0 | 160 | 1.4900 | 0.4875 |
| 1.3857 | 5.0 | 200 | 1.4261 | 0.4938 |
| 1.3857 | 6.0 | 240 | 1.4090 | 0.5 |
| 1.2831 | 7.0 | 280 | 1.3510 | 0.475 |
| 1.2007 | 8.0 | 320 | 1.3788 | 0.475 |
| 1.1256 | 9.0 | 360 | 1.3183 | 0.5 |
| 1.0345 | 10.0 | 400 | 1.2937 | 0.4813 |
| 1.0345 | 11.0 | 440 | 1.2384 | 0.5437 |
| 0.9438 | 12.0 | 480 | 1.2100 | 0.525 |
| 0.872 | 13.0 | 520 | 1.2450 | 0.525 |
| 0.8193 | 14.0 | 560 | 1.2264 | 0.5312 |
| 0.763 | 15.0 | 600 | 1.2296 | 0.5125 |
| 0.763 | 16.0 | 640 | 1.2539 | 0.5188 |
| 0.7166 | 17.0 | 680 | 1.2253 | 0.5563 |
| 0.6328 | 18.0 | 720 | 1.2723 | 0.5312 |
| 0.5917 | 19.0 | 760 | 1.2870 | 0.4875 |
| 0.5841 | 20.0 | 800 | 1.3011 | 0.5375 |
| 0.5841 | 21.0 | 840 | 1.2071 | 0.575 |
| 0.559 | 22.0 | 880 | 1.2555 | 0.575 |
| 0.5109 | 23.0 | 920 | 1.3140 | 0.5 |
| 0.5036 | 24.0 | 960 | 1.2593 | 0.5 |
| 0.4787 | 25.0 | 1000 | 1.2573 | 0.5813 |
| 0.4787 | 26.0 | 1040 | 1.2163 | 0.55 |
| 0.4583 | 27.0 | 1080 | 1.2349 | 0.5563 |
| 0.4766 | 28.0 | 1120 | 1.3349 | 0.5188 |
| 0.4709 | 29.0 | 1160 | 1.3284 | 0.5312 |
| 0.4442 | 30.0 | 1200 | 1.2684 | 0.5625 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1