File size: 3,185 Bytes
cea5484 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: mit
base_model: facebook/xlm-roberta-xl
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: 5e-6_xlm-R-xl_Conspiracy_training_with_callbacks
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 5e-6_xlm-R-xl_Conspiracy_training_with_callbacks
This model is a fine-tuned version of [facebook/xlm-roberta-xl](https://huggingface.co/facebook/xlm-roberta-xl) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0624
- Macro F1: 0.9918
- Micro F1: 0.9919
- Accuracy: 0.9919
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Macro F1 | Micro F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:--------:|
| 0.6122 | 1.0 | 502 | 0.2712 | 0.9549 | 0.9559 | 0.9559 |
| 0.1503 | 2.0 | 1004 | 0.1047 | 0.9741 | 0.9744 | 0.9744 |
| 0.0508 | 3.0 | 1506 | 0.0734 | 0.9835 | 0.9837 | 0.9837 |
| 0.0226 | 4.0 | 2008 | 0.0837 | 0.9811 | 0.9814 | 0.9814 |
| 0.014 | 5.0 | 2510 | 0.0562 | 0.9882 | 0.9884 | 0.9884 |
| 0.0014 | 6.0 | 3012 | 0.0514 | 0.9894 | 0.9895 | 0.9895 |
| 0.0016 | 7.0 | 3514 | 0.0501 | 0.9918 | 0.9919 | 0.9919 |
| 0.0002 | 8.0 | 4016 | 0.0554 | 0.9918 | 0.9919 | 0.9919 |
| 0.0001 | 9.0 | 4518 | 0.0607 | 0.9906 | 0.9907 | 0.9907 |
| 0.0001 | 10.0 | 5020 | 0.0856 | 0.9859 | 0.9861 | 0.9861 |
| 0.0143 | 11.0 | 5522 | 0.0377 | 0.9929 | 0.9930 | 0.9930 |
| 0.0001 | 12.0 | 6024 | 0.0538 | 0.9918 | 0.9919 | 0.9919 |
| 0.0001 | 13.0 | 6526 | 0.0568 | 0.9918 | 0.9919 | 0.9919 |
| 0.0012 | 14.0 | 7028 | 0.0582 | 0.9918 | 0.9919 | 0.9919 |
| 0.0 | 15.0 | 7530 | 0.0500 | 0.9929 | 0.9930 | 0.9930 |
| 0.0001 | 16.0 | 8032 | 0.0649 | 0.9918 | 0.9919 | 0.9919 |
| 0.0 | 17.0 | 8534 | 0.0649 | 0.9918 | 0.9919 | 0.9919 |
| 0.0 | 18.0 | 9036 | 0.0648 | 0.9918 | 0.9919 | 0.9919 |
| 0.0009 | 19.0 | 9538 | 0.0621 | 0.9918 | 0.9919 | 0.9919 |
| 0.0 | 20.0 | 10040 | 0.0624 | 0.9918 | 0.9919 | 0.9919 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1
|