File size: 2,438 Bytes
f8db14a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.2
datasets:
- generator
model-index:
- name: cls_alldata_mistral_v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cls_alldata_mistral_v1

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4126

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5676        | 0.1091 | 20   | 0.5817          |
| 0.5158        | 0.2183 | 40   | 0.5408          |
| 0.5124        | 0.3274 | 60   | 0.5162          |
| 0.4791        | 0.4366 | 80   | 0.4999          |
| 0.4762        | 0.5457 | 100  | 0.4850          |
| 0.4724        | 0.6548 | 120  | 0.4737          |
| 0.4423        | 0.7640 | 140  | 0.4611          |
| 0.4453        | 0.8731 | 160  | 0.4508          |
| 0.4179        | 0.9823 | 180  | 0.4412          |
| 0.3243        | 1.0914 | 200  | 0.4479          |
| 0.3198        | 1.2005 | 220  | 0.4383          |
| 0.3012        | 1.3097 | 240  | 0.4335          |
| 0.3135        | 1.4188 | 260  | 0.4315          |
| 0.3081        | 1.5280 | 280  | 0.4247          |
| 0.3048        | 1.6371 | 300  | 0.4193          |
| 0.322         | 1.7462 | 320  | 0.4150          |
| 0.3034        | 1.8554 | 340  | 0.4136          |
| 0.3188        | 1.9645 | 360  | 0.4126          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1