File size: 4,358 Bytes
2a20a36
7efd3cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a20a36
 
2ba21db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e47db95
 
 
 
 
2a20a36
 
5b2e675
2a20a36
5b2e675
 
2a20a36
5b2e675
2a20a36
5b2e675
 
 
 
 
 
 
 
 
 
 
2a20a36
5b2e675
2a20a36
5b2e675
2a20a36
 
 
5b2e675
 
 
2a20a36
5b2e675
2a20a36
5b2e675
 
 
 
2a20a36
5b2e675
2a20a36
 
 
5b2e675
 
 
 
 
 
 
2a20a36
 
5b2e675
2a20a36
5b2e675
 
2a20a36
5b2e675
2a20a36
5b2e675
2a20a36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
widget:
- text: "Kapalula Stiftung"
- text: "Hilti Glasbau AG"
- text: "KASSALA PRIVATE TRUSTEE ESTABLISHMENT"
- text: "Scarabaeus Active Fund"
- text: "Spectrum Alternative Assets SICAV - Spectrum Growth Fund"
- text: "The Gani (IOM) Trust"
- text: "FONDECTA Trust Reg."
- text: "M&N Holding GmbH"
- text: "LGT Select Equity Enhanced Minimum Variance"
- text: "HEC GmbH & Co. KG"
- text: "Liechtenstein-Institut"
- text: "HECTOR PLAST SE"
- text: "Liechtensteiner Milchverband eingetragene Genossenschaft"
- text: "Markus Haas MHS Makler Büro"
library_name: transformers
tags: []
model-index:
- name: Sociovestix/lenu_LI
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: lenu
      type: Sociovestix/lenu
      config: LI
      split: test
      revision: f4d57b8d77a49ec5c62d899c9a213d23cd9f9428
    metrics:
    - type: f1
      value: 0.9451453647833242
      name: f1
    - type: f1
      value: 0.8044260987610308
      name: f1 macro
      args:
        average: macro
---

# LENU - Legal Entity Name Understanding for Liechtenstein

A Bert (multilingual uncased) model fine-tuned on Liechtenstein entity names (jurisdiction LI) from the Global [Legal Entity Identifier](https://www.gleif.org/en/about-lei/introducing-the-legal-entity-identifier-lei)
(LEI) System with the goal to detect [Entity Legal Form (ELF) Codes](https://www.gleif.org/en/about-lei/code-lists/iso-20275-entity-legal-forms-code-list).

---------------

<h1 align="center">
<a href="https://gleif.org">
<img src="http://sdglabs.ai/wp-content/uploads/2022/07/gleif-logo-new.png" width="220px" style="display: inherit">
</a>
</h1><br>
<h3 align="center">in collaboration with</h3> 
<h1 align="center">
<a href="https://sociovestix.com">
<img src="https://sociovestix.com/img/svl_logo_centered.svg" width="700px" style="width: 100%">
</a>
</h1><br>

---------------

## Model Description

<!-- Provide a longer summary of what this model is. -->

The model has been created as part of a collaboration of the [Global Legal Entity Identifier Foundation](https://gleif.org) (GLEIF) and
[Sociovestix Labs](https://sociovestix.com) with the goal to explore how Machine Learning can support in detecting the ELF Code solely based on an entity's legal name and legal jurisdiction.
See also the open source python library [lenu](https://github.com/Sociovestix/lenu), which supports in this task.

The model has been trained on the dataset [lenu](https://huggingface.co/datasets/Sociovestix), with a focus on Liechtenstein legal entities and ELF Codes within the Jurisdiction "LI".

- **Developed by:** [GLEIF](https://gleif.org) and [Sociovestix Labs](https://huggingface.co/Sociovestix)
- **License:** Creative Commons (CC0) license
- **Finetuned from model [optional]:** bert-base-multilingual-uncased
- **Resources for more information:** [Press Release](https://www.gleif.org/en/newsroom/press-releases/machine-learning-new-open-source-tool-developed-by-gleif-and-sociovestix-labs-enables-organizations-everywhere-to-automatically-)

# Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

An entity's legal form is a crucial component when verifying and screening organizational identity.
The wide variety of entity legal forms that exist within and between jurisdictions, however, has made it difficult for large organizations to capture legal form as structured data.
The Jurisdiction specific models of [lenu](https://github.com/Sociovestix/lenu), trained on entities from
GLEIF’s Legal Entity Identifier (LEI) database of over two million records, will allow banks, 
investment firms, corporations, governments, and other large organizations to retrospectively analyze
their master data, extract the legal form from the unstructured text of the legal name and
uniformly apply an ELF code to each entity type, according to the ISO 20275 standard.


# Licensing Information

This model, which is trained on LEI data, is available under Creative Commons (CC0) license. 
See [gleif.org/en/about/open-data](https://gleif.org/en/about/open-data).

# Recommendations

Users should always consider the score of the suggested ELF Codes. For low score values it may be necessary to manually review the affected entities.