File size: 5,068 Bytes
bde54d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# coding=utf-8
# Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" RWKV configuration"""

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)

RWKV7_PRETRAINED_CONFIG_ARCHIVE_MAP = {}


class Rwkv7Config(PretrainedConfig):
    """

    This is the configuration class to store the configuration of a [`Rwkv7Model`]. It is used to instantiate a RWKV7

    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the

    defaults will yield a similar configuration to that of the RWVK-7

    [RWKV/v7-Goose-1.6B-Pile-HF](https://huggingface.co/RWKV/v7-Goose-1.6B-Pile-HF) architecture.



    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the

    documentation from [`PretrainedConfig`] for more information.





    Args:

        vocab_size (`int`, *optional*, defaults to 65536):

            Vocabulary size of the RWKV7 model. Defines the number of different tokens that can be represented by the

            `inputs_ids` passed when calling [`Rwkv7Model`].

        hidden_size (`int`, *optional*, defaults to 768):

            Dimensionality of the embeddings and hidden states.

        num_hidden_layers (`int`, *optional*, defaults to 24):

            Number of hidden layers in the model.

        attention_hidden_size (`int`, *optional*):

            Dimensionality of the attention hidden states. Will default to `hidden_size` if unset.

        num_attention_heads (`int`, *optional*, defaults to 64):

            The attention heads to use in rwkv7 self_attention module.

        head_size (`int`, *optional*, defaults to 64): head_size of rwkv7 self_attention module.

        intermediate_size (`int`, *optional*):

            Dimensionality of the inner feed-forward layers. Will default to 4 times `hidden_size` if unset.

        layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):

            The epsilon to use in the layer normalization layers.

        bos_token_id (`int`, *optional*, defaults to 0):

            The id of the beginning of sentence token in the vocabulary. Defaults to 0.

        eos_token_id (`int`, *optional*, defaults to 0):

            The id of the end of sentence token in the vocabulary. Defaults to 0.

        tie_word_embeddings (`bool`, *optional*, defaults to `False`):

            Whether or not to tie the word embeddings with the input token embeddings.

        use_cache (`bool`, *optional*, defaults to `True`):

            Whether or not the model should return the last state.





    Example:



    ```python

    >>> from transformers import Rwkv7Config, Rwkv7Model



    >>> # Initializing a Rwkv7 configuration

    >>> configuration = Rwkv7Config()



    >>> # Initializing a model (with random weights) from the configuration

    >>> model = Rwkv7Model(configuration)



    >>> # Accessing the model configuration

    >>> configuration = model.config

    ```"""

    model_type = "rwkv7"

    def __init__(

        self,

        vocab_size=65536,

        hidden_size=768,

        num_hidden_layers=24,

        attention_hidden_size=None,

        head_size=64,

        intermediate_size=None,

        lora_rank_decay=None,

        lora_rank_iclr=None,

        lora_rank_value_residual_mix=None,

        lora_rank_gate=None,

        layer_norm_epsilon=1e-5,

        bos_token_id=0,

        eos_token_id=0,

        tie_word_embeddings=False,

        use_cache=True,

        **kwargs,

    ):
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.attention_hidden_size = attention_hidden_size if attention_hidden_size is not None else hidden_size
        self.head_size = head_size
        self.intermediate_size = intermediate_size
        self.lora_rank_decay = lora_rank_decay
        self.lora_rank_iclr = lora_rank_iclr
        self.lora_rank_value_residual_mix = lora_rank_value_residual_mix
        self.lora_rank_gate = lora_rank_gate
        self.layer_norm_epsilon = layer_norm_epsilon
        self.use_cache = use_cache

        super().__init__(
            tie_word_embeddings=tie_word_embeddings, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs
        )