File size: 4,779 Bytes
11f6a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
from torch import nn

from collections import OrderedDict
import logging

logger = logging.getLogger(__name__)


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        if self.weight.dtype != x.dtype:
            orig_type = x.dtype
            ret = super().forward(x.type(self.weight.dtype))
            return ret.type(orig_type)
        else:
            return super().forward(x)


class QuickGELU(nn.Module):
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)


class ResidualAttentionBlock(nn.Module):
    def __init__(
        self,
        d_model: int,
        n_head: int,
        attn_mask: torch.Tensor = None,
    ):
        super().__init__()

        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(
            OrderedDict(
                [
                    (
                        "c_fc",
                        nn.Linear(d_model, d_model * 4),
                    ),
                    ("gelu", QuickGELU()),
                    (
                        "c_proj",
                        nn.Linear(d_model * 4, d_model),
                    ),
                ]
            )
        )
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask

    def attention(self, x: torch.Tensor):
        self.attn_mask = (
            self.attn_mask.to(dtype=x.dtype, device=x.device)
            if self.attn_mask is not None
            else None
        )
        return self.attn(
            x,
            x,
            x,
            need_weights=False,
            attn_mask=self.attn_mask,
        )[0]

    def forward(self, x: torch.Tensor):
        x = x + self.attention(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


class Transformer(nn.Module):
    def __init__(
        self,
        width: int,
        layers: int,
        heads: int,
        attn_mask: torch.Tensor = None,
    ):
        super().__init__()
        self.width = width
        self.layers = layers
        self.resblocks = nn.Sequential(
            *[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]
        )

    def forward(self, x: torch.Tensor):
        return self.resblocks(x)


class ConditionalViT(nn.Module):
    def __init__(
        self,
        input_resolution: int,
        patch_size: int,
        width: int,
        layers: int,
        heads: int,
        output_dim: int,
        n_categories: int,
    ):
        super().__init__()
        self.input_resolution = input_resolution
        self.output_dim = output_dim
        self.conv1 = nn.Conv2d(
            in_channels=3,
            out_channels=width,
            kernel_size=patch_size,
            stride=patch_size,
            bias=False,
        )

        scale = width**-0.5

        self.class_embedding = nn.Parameter(scale * torch.randn(width))

        self.n_categories = n_categories
        self.c_embedding = nn.Embedding(self.n_categories, width)
        self.c_pos_embedding = nn.Parameter(scale * torch.randn(1, width))

        self.positional_embedding = nn.Parameter(
            scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)
        )
        self.ln_pre = LayerNorm(width)

        self.transformer = Transformer(width, layers, heads)
        self.ln_post = LayerNorm(width)
        self.logit_scale = torch.nn.Parameter(torch.ones([]) * 4.6052)

        self.proj = nn.Parameter(scale * torch.randn(width, output_dim))

    def forward(self, imgs: torch.Tensor, c: torch.Tensor = None):
        """
        imgs : Batch of images
        c : category indices.
        """

        x = self.conv1(imgs)  # shape = [*, width, grid, grid]
        # shape = [*, width, grid ** 2]
        x = x.reshape(x.shape[0], x.shape[1], -1)
        x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width]

        # [CLS, grid] + maybe Categories.
        tokens = [self.class_embedding.tile(x.shape[0], 1, 1), x]  # NLD
        pos_embed = [self.positional_embedding]  # LD

        if c is not None:  # If c is None, we don't add the token
            tokens += [self.c_embedding(c).unsqueeze(1)]  # ND -> N1D
            pos_embed += [self.c_pos_embedding]  # 1D

        # shape = [*, grid ** 2 + 1|2, width] = N(L|L+1)D
        x = torch.cat(tokens, dim=1)
        pos_embed = torch.cat(pos_embed, dim=0).unsqueeze(0)  # 1(L|L+1)D

        x = x + pos_embed
        x = self.ln_pre(x)

        x = x.permute(1, 0, 2)  # NLD -> LND

        x = self.transformer(x)
        x = x.permute(1, 0, 2)  # LND -> NLD

        x = self.ln_post(x[:, 0, :])

        x = x @ self.proj

        return x