File size: 1,749 Bytes
fc83468
 
 
 
 
 
 
 
 
 
 
 
 
 
e802c41
 
12376ec
 
f053986
 
 
 
 
9247735
 
 
 
 
 
 
 
dbc7041
 
 
 
 
 
 
 
 
 
 
 
9247735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbc7041
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
language:
- multilingual
- pl
- ru
- uk
- bg
- cs
- sl
datasets:
- SlavicNER
license: apache-2.0
library_name: transformers
pipeline_tag: text2text-generation
tags:
- lemmatization
widget:
  - text: "pl:Polsce"
  - text: "cs:Velké Británii"
  - text: "bg:българите"
  - text: "ru:Великобританию"
  - text: "sl:evropske komisije"
  - text: "uk:Європейського агентства лікарських засобів"
---

# Model description

This is a baseline model for named entity **lemmatization** trained on the single-out topic split of the 
[SlavicNER corpus](https://github.com/SlavicNLP/SlavicNER).


# Resources and Technical Documentation

- Paper: [Cross-lingual Named Entity Corpus for Slavic Languages](https://arxiv.org/pdf/2404.00482), to appear in LREC-COLING 2024.
- Annotation guidelines: https://arxiv.org/pdf/2404.00482
- SlavicNER Corpus: https://github.com/SlavicNLP/SlavicNER


# Evaluation

*Will appear soon*


# Usage

You can use this model directly with a pipeline for text2text generation:

```python
from transformers import pipeline

model_name = "SlavicNLP/slavicner-lemma-single-out-large"
pipe = pipeline("text2text-generation", model_name)

texts = ["pl:Polsce", "cs:Velké Británii", "bg:българите", "ru:Великобританию", "sl:evropske komisije",
         "uk:Європейського агентства лікарських засобів"]

outputs = pipe(texts)

lemmas = [o['generated_text'] for o in outputs]
print(lemmas)
# ['Polska', 'Velká Británie', 'българи', 'Великобритания', 'evropska komisija', 'Європейське агентство лікарських засобів']
```

# Citation

*Will appear soon*