File size: 10,938 Bytes
672357f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import os
import requests
import tarfile
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import json
import math
from tqdm import tqdm
from transformers import BertTokenizer, BertModel
import gradio as gr
# Configuration
class Config:
device = "cuda" if torch.cuda.is_available() else "cpu"
image_size = 64
batch_size = 32
num_epochs = 50
learning_rate = 1e-4
timesteps = 1000
text_embed_dim = 768
num_images_options = [1, 4, 6]
# URLs for COCO dataset download
coco_images_url = "http://images.cocodataset.org/zips/train2017.zip"
coco_annotations_url = "http://images.cocodataset.org/annotations/annotations_trainval2017.zip"
data_dir = "./coco_data"
images_dir = os.path.join(data_dir, "train2017")
annotations_path = os.path.join(data_dir, "annotations/instances_train2017.json")
def __init__(self):
os.makedirs(self.data_dir, exist_ok=True)
config = Config()
# Download COCO dataset
def download_and_extract_coco():
if os.path.exists(config.images_dir) and os.path.exists(config.annotations_path):
print("COCO dataset already downloaded")
return
print("Downloading COCO dataset...")
# Download images
images_zip_path = os.path.join(config.data_dir, "train2017.zip")
if not os.path.exists(images_zip_path):
response = requests.get(config.coco_images_url, stream=True)
with open(images_zip_path, "wb") as f:
for chunk in tqdm(response.iter_content(chunk_size=1024)):
if chunk:
f.write(chunk)
# Download annotations
annotations_zip_path = os.path.join(config.data_dir, "annotations_trainval2017.zip")
if not os.path.exists(annotations_zip_path):
response = requests.get(config.coco_annotations_url, stream=True)
with open(annotations_zip_path, "wb") as f:
for chunk in tqdm(response.iter_content(chunk_size=1024)):
if chunk:
f.write(chunk)
# Extract files
print("Extracting images...")
with tarfile.open(images_zip_path, "r:zip") as tar:
tar.extractall(config.data_dir)
print("Extracting annotations...")
with tarfile.open(annotations_zip_path, "r:zip") as tar:
tar.extractall(config.data_dir)
print("COCO dataset ready")
download_and_extract_coco()
# Text model
class TextEncoder(nn.Module):
def __init__(self):
super().__init__()
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.model = BertModel.from_pretrained('bert-base-uncased')
for param in self.model.parameters():
param.requires_grad = False
def forward(self, texts):
inputs = self.tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=64)
inputs = {k: v.to(config.device) for k, v in inputs.items()}
outputs = self.model(**inputs)
return outputs.last_hidden_state[:, 0, :]
text_encoder = TextEncoder().to(config.device)
# Diffusion model
class ConditionalUNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.down1 = DownBlock(64, 128)
self.down2 = DownBlock(128, 256)
self.text_proj = nn.Linear(config.text_embed_dim, 256)
self.merge = nn.Linear(256 + 256, 256)
self.up1 = UpBlock(256, 128)
self.up2 = UpBlock(128, 64)
self.final = nn.Conv2d(64, 3, kernel_size=3, padding=1)
def forward(self, x, t, text_emb):
x1 = F.relu(self.conv1(x))
x2 = self.down1(x1)
x3 = self.down2(x2)
text_emb = self.text_proj(text_emb)
text_emb = text_emb.unsqueeze(-1).unsqueeze(-1)
text_emb = text_emb.expand(-1, -1, x3.size(2), x3.size(3))
x = torch.cat([x3, text_emb], dim=1)
b, c, h, w = x.shape
x = x.permute(0, 2, 3, 1).reshape(b*h*w, c)
x = self.merge(x)
x = x.reshape(b, h, w, 256).permute(0, 3, 1, 2)
x = self.up1(x)
x = self.up2(x)
return self.final(x)
class DownBlock(nn.Module):
def __init__(self, in_ch, out_ch):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(),
nn.MaxPool2d(2)
)
def forward(self, x):
return self.conv(x)
class UpBlock(nn.Module):
def __init__(self, in_ch, out_ch):
super().__init__()
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU()
)
def forward(self, x):
x = self.up(x)
return self.conv(x)
# Diffusion process
betas = linear_beta_schedule(config.timesteps).to(config.device)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod)
def linear_beta_schedule(timesteps):
beta_start = 0.0001
beta_end = 0.02
return torch.linspace(beta_start, beta_end, timesteps)
def forward_diffusion_sample(x_0, t, device=config.device):
noise = torch.randn_like(x_0)
sqrt_alphas_cumprod_t = sqrt_alphas_cumprod[t].view(-1, 1, 1, 1)
sqrt_one_minus_alphas_cumprod_t = sqrt_one_minus_alphas_cumprod[t].view(-1, 1, 1, 1)
return sqrt_alphas_cumprod_t * x_0 + sqrt_one_minus_alphas_cumprod_t * noise, noise
# COCO Dataset
class CocoDataset(Dataset):
def __init__(self, root_dir, annotations_file, transform=None):
self.root_dir = root_dir
self.transform = transform
with open(annotations_file, 'r') as f:
data = json.load(f)
self.images = []
self.captions = []
image_id_to_captions = {}
for ann in data['annotations']:
if ann['image_id'] not in image_id_to_captions:
image_id_to_captions[ann['image_id']] = []
image_id_to_captions[ann['image_id']].append(ann['caption'])
for img in data['images']:
if img['id'] in image_id_to_captions:
self.images.append(img)
self.captions.append(image_id_to_captions[img['id']][0])
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img_path = os.path.join(self.root_dir, self.images[idx]['file_name'])
image = Image.open(img_path).convert('RGB')
caption = self.captions[idx]
if self.transform:
image = self.transform(image)
return image, caption
# Transformations
transform = transforms.Compose([
transforms.Resize((config.image_size, config.image_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# Model initialization
model = ConditionalUNet().to(config.device)
optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
# Training
def train():
dataset = CocoDataset(config.images_dir, config.annotations_path, transform)
dataloader = DataLoader(dataset, batch_size=config.batch_size, shuffle=True)
for epoch in range(config.num_epochs):
for batch_idx, (images, captions) in enumerate(tqdm(dataloader)):
images = images.to(config.device)
# Get text embeddings
text_emb = text_encoder(captions)
# Sample random timesteps
t = torch.randint(0, config.timesteps, (images.size(0),), device=config.device)
# Forward diffusion
x_noisy, noise = forward_diffusion_sample(images, t)
# Predict noise
pred_noise = model(x_noisy, t, text_emb)
# Loss and backpropagation
loss = F.mse_loss(pred_noise, noise)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print(f"Epoch {epoch}, Batch {batch_idx}, Loss: {loss.item():.4f}")
# Save model
torch.save(model.state_dict(), f"model_epoch_{epoch}.pth")
# Generation
@torch.no_grad()
def generate(prompt, num_images=1):
model.eval()
num_images = int(num_images)
text_emb = text_encoder([prompt]*num_images)
x = torch.randn((num_images, 3, config.image_size, config.image_size)).to(config.device)
for t in reversed(range(config.timesteps)):
t_tensor = torch.full((num_images,), t, device=config.device)
pred_noise = model(x, t_tensor, text_emb)
alpha_t = alphas[t].view(1, 1, 1, 1)
alpha_cumprod_t = alphas_cumprod[t].view(1, 1, 1, 1)
beta_t = betas[t].view(1, 1, 1, 1)
if t > 0:
noise = torch.randn_like(x)
else:
noise = torch.zeros_like(x)
x = (1 / torch.sqrt(alpha_t)) * (
x - ((1 - alpha_t) / torch.sqrt(1 - alpha_cumprod_t)) * pred_noise
) + torch.sqrt(beta_t) * noise
x = torch.clamp(x, -1, 1)
x = (x + 1) / 2
images = []
for img in x:
img = transforms.ToPILImage()(img.cpu())
images.append(img)
return images
# GUI
def generate_and_display(prompt, num_images):
images = generate(prompt, num_images)
fig, axes = plt.subplots(1, len(images), figsize=(5*len(images), 5))
if len(images) == 1:
axes.imshow(images[0])
axes.axis('off')
else:
for ax, img in zip(axes, images):
ax.imshow(img)
ax.axis('off')
plt.tight_layout()
return fig
with gr.Blocks() as demo:
gr.Markdown("## GPUDiff-V1: diffussion powerful image generator!")
with gr.Row():
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter image description...")
num_select = gr.Dropdown(choices=config.num_images_options, value=1, label="Number of images")
generate_btn = gr.Button("Generate")
output = gr.Plot()
generate_btn.click(
fn=generate_and_display,
inputs=[prompt_input, num_select],
outputs=output
)
if __name__ == "__main__":
train()
demo.launch() |