Question Answering
Transformers
English
legal
File size: 5,709 Bytes
1488879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from datasets import load_dataset
from transformers import AutoTokenizer
from tqdm import tqdm
import math

# 1. Dataset class for loading and processing data
class FullChatDataset(Dataset):
    def __init__(self, dataset_names=["blended_skill_talk", "conv_ai_2", "social_i_qa"], max_length=128):
        self.datasets = []
        
        # Load all specified datasets
        for name in dataset_names:
            try:
                dataset = load_dataset(name, split="train")
                self.datasets.append(dataset)
            except Exception as e:
                print(f"Failed to load dataset {name}: {e}")
        
        self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
        self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
        self.max_length = max_length
        
    def __len__(self):
        return sum(len(d) for d in self.datasets)
    
    def __getitem__(self, idx):
        # Determine which dataset the index belongs to
        for dataset in self.datasets:
            if idx < len(dataset):
                item = dataset[idx]
                break
            idx -= len(dataset)
        
        # Handling different dataset formats
        if 'dialog' in item:  # For Daily Dialog
            dialog = item['dialog']
        elif 'messages' in item:  # For some other datasets
            dialog = [msg['text'] for msg in item['messages']]
        else:  # Universal handling
            dialog = [v for k, v in item.items() if isinstance(v, str)]
        
        context = " [SEP] ".join(dialog[:-1])
        response = dialog[-1]
        
        inputs = self.tokenizer(
            context,
            text_pair=response,
            max_length=self.max_length,
            padding='max_length',
            truncation=True,
            return_tensors="pt"
        )
        
        return {
            'input_ids': inputs['input_ids'].flatten(),
            'attention_mask': inputs['attention_mask'].flatten(),
            'labels': inputs['input_ids'].flatten()
        }

# 2. Model architecture
class SimpleTransformerModel(nn.Module):
    def __init__(self, vocab_size, d_model=256, nhead=4, num_layers=3):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, d_model)
        self.pos_encoder = PositionalEncoding(d_model)
        encoder_layer = nn.TransformerEncoderLayer(d_model, nhead)
        self.transformer = nn.TransformerEncoder(encoder_layer, num_layers)
        self.fc = nn.Linear(d_model, vocab_size)
        
    def forward(self, x, mask=None):
        x = self.embedding(x)
        x = self.pos_encoder(x)
        x = self.transformer(x, mask)
        return self.fc(x)

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_len=500):
        super().__init__()
        position = torch.arange(max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
        pe = torch.zeros(max_len, d_model)
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        self.register_buffer('pe', pe)
        
    def forward(self, x):
        return x + self.pe[:x.size(1)]

# 3. Model training
def train(model, dataloader, epochs=3, lr=3e-4):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = model.to(device)
    criterion = nn.CrossEntropyLoss(ignore_index=0)
    optimizer = optim.Adam(model.parameters(), lr=lr)
    
    for epoch in range(epochs):
        model.train()
        total_loss = 0
        pbar = tqdm(dataloader, desc=f"Epoch {epoch+1}/{epochs}")
        
        for batch in pbar:
            inputs = batch['input_ids'].to(device)
            masks = batch['attention_mask'].to(device)
            labels = batch['labels'].to(device)
            
            optimizer.zero_grad()
            outputs = model(inputs, masks)
            loss = criterion(outputs.view(-1, outputs.size(-1)), labels.view(-1))
            loss.backward()
            optimizer.step()
            
            total_loss += loss.item()
            pbar.set_postfix({'loss': loss.item()})
        
        print(f"Epoch {epoch+1} - Avg loss: {total_loss/len(dataloader):.4f}")

# 4. Response generation
def chat(model, tokenizer, prompt, max_length=50):
    device = next(model.parameters()).device
    model.eval()
    
    inputs = tokenizer(
        prompt,
        return_tensors="pt",
        max_length=128,
        truncation=True,
        padding='max_length'
    ).to(device)
    
    with torch.no_grad():
        outputs = model.generate(
            input_ids=inputs['input_ids'],
            attention_mask=inputs['attention_mask'],
            max_length=max_length,
            do_sample=True,
            top_k=50,
            top_p=0.95,
            temperature=0.7
        )
    
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# 5. Main process
if __name__ == "__main__":
    # Initialization
    dataset = FullChatDataset()
    dataloader = DataLoader(dataset, batch_size=16, shuffle=True)
    
    # Model creation
    model = SimpleTransformerModel(len(dataset.tokenizer))
    
    # Training
    train(model, dataloader)
    
    # Saving
    torch.save(model.state_dict(), "chatbot_model.pt")
    dataset.tokenizer.save_pretrained("chatbot_tokenizer")
    
    
    while True:
        user_input = input("You: ")
        if user_input.lower() in ['exit', 'quit']:
            break
        response = chat(model, dataset.tokenizer, user_input)
        print(f"Bot: {response}")