File size: 9,026 Bytes
ceed500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Helper functions for pre-training. These mainly deal with the gathering and
scattering needed so the generator only makes predictions for the small number
of masked tokens.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

import configure_pretraining
from model import modeling
from model import tokenization
from pretrain import pretrain_data


def gather_positions(sequence, positions):
  """Gathers the vectors at the specific positions over a minibatch.

  Args:
    sequence: A [batch_size, seq_length] or
        [batch_size, seq_length, depth] tensor of values
    positions: A [batch_size, n_positions] tensor of indices

  Returns: A [batch_size, n_positions] or
    [batch_size, n_positions, depth] tensor of the values at the indices
  """
  shape = modeling.get_shape_list(sequence, expected_rank=[2, 3])
  depth_dimension = (len(shape) == 3)
  if depth_dimension:
    B, L, D = shape
  else:
    B, L = shape
    D = 1
    sequence = tf.expand_dims(sequence, -1)
  position_shift = tf.expand_dims(L * tf.range(B), -1)
  flat_positions = tf.reshape(positions + position_shift, [-1])
  flat_sequence = tf.reshape(sequence, [B * L, D])
  gathered = tf.gather(flat_sequence, flat_positions)
  if depth_dimension:
    return tf.reshape(gathered, [B, -1, D])
  else:
    return tf.reshape(gathered, [B, -1])


def scatter_update(sequence, updates, positions):
  """Scatter-update a sequence.

  Args:
    sequence: A [batch_size, seq_len] or [batch_size, seq_len, depth] tensor
    updates: A tensor of size batch_size*seq_len(*depth)
    positions: A [batch_size, n_positions] tensor

  Returns: A tuple of two tensors. First is a [batch_size, seq_len] or
    [batch_size, seq_len, depth] tensor of "sequence" with elements at
    "positions" replaced by the values at "updates." Updates to index 0 are
    ignored. If there are duplicated positions the update is only applied once.
    Second is a [batch_size, seq_len] mask tensor of which inputs were updated.
  """
  shape = modeling.get_shape_list(sequence, expected_rank=[2, 3])
  depth_dimension = (len(shape) == 3)
  if depth_dimension:
    B, L, D = shape
  else:
    B, L = shape
    D = 1
    sequence = tf.expand_dims(sequence, -1)
  N = modeling.get_shape_list(positions)[1]

  shift = tf.expand_dims(L * tf.range(B), -1)
  flat_positions = tf.reshape(positions + shift, [-1, 1])
  flat_updates = tf.reshape(updates, [-1, D])
  updates = tf.scatter_nd(flat_positions, flat_updates, [B * L, D])
  updates = tf.reshape(updates, [B, L, D])

  flat_updates_mask = tf.ones([B * N], tf.int32)
  updates_mask = tf.scatter_nd(flat_positions, flat_updates_mask, [B * L])
  updates_mask = tf.reshape(updates_mask, [B, L])
  not_first_token = tf.concat([tf.zeros((B, 1), tf.int32),
                               tf.ones((B, L - 1), tf.int32)], -1)
  updates_mask *= not_first_token
  updates_mask_3d = tf.expand_dims(updates_mask, -1)

  # account for duplicate positions
  if sequence.dtype == tf.float32:
    updates_mask_3d = tf.cast(updates_mask_3d, tf.float32)
    updates /= tf.maximum(1.0, updates_mask_3d)
  else:
    assert sequence.dtype == tf.int32
    updates = tf.math.floordiv(updates, tf.maximum(1, updates_mask_3d))
  updates_mask = tf.minimum(updates_mask, 1)
  updates_mask_3d = tf.minimum(updates_mask_3d, 1)

  updated_sequence = (((1 - updates_mask_3d) * sequence) +
                      (updates_mask_3d * updates))
  if not depth_dimension:
    updated_sequence = tf.squeeze(updated_sequence, -1)

  return updated_sequence, updates_mask


VOCAB_MAPPING = {}


def get_vocab(config: configure_pretraining.PretrainingConfig):
  """Memoized load of the vocab file."""
  if config.vocab_file not in VOCAB_MAPPING:
    vocab = tokenization.FullTokenizer(
        config.vocab_file, do_lower_case=True).vocab
    VOCAB_MAPPING[config.vocab_file] = vocab
  return VOCAB_MAPPING[config.vocab_file]


def get_candidates_mask(config: configure_pretraining.PretrainingConfig,
                        inputs: pretrain_data.Inputs,
                        disallow_from_mask=None):
  """Returns a mask tensor of positions in the input that can be masked out."""
  vocab = get_vocab(config)
  ignore_ids = [vocab["[SEP]"], vocab["[CLS]"], vocab["[MASK]"]]
  candidates_mask = tf.ones_like(inputs.input_ids, tf.bool)
  for ignore_id in ignore_ids:
    candidates_mask &= tf.not_equal(inputs.input_ids, ignore_id)
  candidates_mask &= tf.cast(inputs.input_mask, tf.bool)
  if disallow_from_mask is not None:
    candidates_mask &= ~disallow_from_mask
  return candidates_mask


def mask(config: configure_pretraining.PretrainingConfig,
         inputs: pretrain_data.Inputs, mask_prob, proposal_distribution=1.0,
         disallow_from_mask=None, already_masked=None):
  """Implementation of dynamic masking. The optional arguments aren't needed for
  BERT/ELECTRA and are from early experiments in "strategically" masking out
  tokens instead of uniformly at random.

  Args:
    config: configure_pretraining.PretrainingConfig
    inputs: pretrain_data.Inputs containing input input_ids/input_mask
    mask_prob: percent of tokens to mask
    proposal_distribution: for non-uniform masking can be a [B, L] tensor
                           of scores for masking each position.
    disallow_from_mask: a boolean tensor of [B, L] of positions that should
                        not be masked out
    already_masked: a boolean tensor of [B, N] of already masked-out tokens
                    for multiple rounds of masking
  Returns: a pretrain_data.Inputs with masking added
  """
  # Get the batch size, sequence length, and max masked-out tokens
  N = config.max_predictions_per_seq
  B, L = modeling.get_shape_list(inputs.input_ids)

  # Find indices where masking out a token is allowed
  vocab = get_vocab(config)
  candidates_mask = get_candidates_mask(config, inputs, disallow_from_mask)

  # Set the number of tokens to mask out per example
  num_tokens = tf.cast(tf.reduce_sum(inputs.input_mask, -1), tf.float32)
  num_to_predict = tf.maximum(1, tf.minimum(
      N, tf.cast(tf.round(num_tokens * mask_prob), tf.int32)))
  masked_lm_weights = tf.cast(tf.sequence_mask(num_to_predict, N), tf.float32)
  if already_masked is not None:
    masked_lm_weights *= (1 - already_masked)

  # Get a probability of masking each position in the sequence
  candidate_mask_float = tf.cast(candidates_mask, tf.float32)
  sample_prob = (proposal_distribution * candidate_mask_float)
  sample_prob /= tf.reduce_sum(sample_prob, axis=-1, keepdims=True)

  # Sample the positions to mask out
  sample_prob = tf.stop_gradient(sample_prob)
  sample_logits = tf.log(sample_prob)
  masked_lm_positions = tf.random.categorical(
      sample_logits, N, dtype=tf.int32)
  masked_lm_positions *= tf.cast(masked_lm_weights, tf.int32)

  # Get the ids of the masked-out tokens
  shift = tf.expand_dims(L * tf.range(B), -1)
  flat_positions = tf.reshape(masked_lm_positions + shift, [-1, 1])
  masked_lm_ids = tf.gather_nd(tf.reshape(inputs.input_ids, [-1]),
                               flat_positions)
  masked_lm_ids = tf.reshape(masked_lm_ids, [B, -1])
  masked_lm_ids *= tf.cast(masked_lm_weights, tf.int32)

  # Update the input ids
  replace_with_mask_positions = masked_lm_positions * tf.cast(
      tf.less(tf.random.uniform([B, N]), 0.85), tf.int32)
  inputs_ids, _ = scatter_update(
      inputs.input_ids, tf.fill([B, N], vocab["[MASK]"]),
      replace_with_mask_positions)

  return pretrain_data.get_updated_inputs(
      inputs,
      input_ids=tf.stop_gradient(inputs_ids),
      masked_lm_positions=masked_lm_positions,
      masked_lm_ids=masked_lm_ids,
      masked_lm_weights=masked_lm_weights
  )


def unmask(inputs: pretrain_data.Inputs):
  unmasked_input_ids, _ = scatter_update(
      inputs.input_ids, inputs.masked_lm_ids, inputs.masked_lm_positions)
  return pretrain_data.get_updated_inputs(inputs, input_ids=unmasked_input_ids)


def sample_from_softmax(logits, disallow=None):
  if disallow is not None:
    logits -= 1000.0 * disallow
  uniform_noise = tf.random.uniform(
      modeling.get_shape_list(logits), minval=0, maxval=1)
  gumbel_noise = -tf.log(-tf.log(uniform_noise + 1e-9) + 1e-9)
  return tf.one_hot(tf.argmax(tf.nn.softmax(logits + gumbel_noise), -1,
                              output_type=tf.int32), logits.shape[-1])