File size: 6,452 Bytes
ceed500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

# AraGPT2

You can find more information in our paper [AraGPT2](https://arxiv.org/abs/2012.15520)

The code in this repository was used to train all GPT2 variants. The code support training and fine-tuning GPT2 on GPUs and TPUs via the TPUEstimator API.

GPT2-base and medium uses the code from the `gpt2` folder and can trains models from the [minimaxir/gpt-2-simple](https://github.com/minimaxir/gpt-2-simple) repository.
These models were trained using the `lamb` optimizer and follow the same architecture as `gpt2` and are fully compatible with the `transformers` library.

GPT2-large and GPT2-mega were trained using the [imcaspar/gpt2-ml](https://github.com/imcaspar/gpt2-ml/) library, and follow the `grover` architecture. You can use the pytorch classes found in `grover/modeling_gpt2.py` as a direct replacement for classes in the `transformers` library (it should support version `v4.x` from `transformers`).
Both models are trained using the `adafactor` optimizer, since the `adam` and `lamb` optimizer use too much memory causing the model to not even fit 1 batch on a TPU core.

AraGPT2 is trained on the same large Arabic Dataset as AraBERTv2.

# AraGPT2 Detector
Machine generated detector model from the [AraGPT2: Pre-Trained Transformer for Arabic Language Generation paper](https://arxiv.org/abs/2012.15520)
This model is trained on the long text passages, and achieves a 99.4% F1-Score.


# Usage

## Testing the model using `transformers`:

```python
from transformers import GPT2TokenizerFast, pipeline
#for base and medium
from transformers import GPT2LMHeadModel
#for large and mega
from arabert.aragpt2.grover.modeling_gpt2 import GPT2LMHeadModel

from arabert.preprocess import ArabertPreprocessor

MODEL_NAME='aubmindlab/aragpt2-base'
arabert_prep = ArabertPreprocessor(model_name=MODEL_NAME)

model = GPT2LMHeadModel.from_pretrained(MODEL_NAME)
tokenizer = GPT2TokenizerFast.from_pretrained(MODEL_NAME)
generation_pipeline = pipeline("text-generation",model=model,tokenizer=tokenizer)

text=""
text_clean = arabert_prep.preprocess(text)

#feel free to try different decoding settings
generation_pipeline(
    text_clean,
    pad_token_id=tokenizer.eos_token_id,
    num_beams=10,
    max_length=200,
    top_p=0.9,
    repetition_penalty = 3.0,
    no_repeat_ngram_size = 3)[0]['generated_text']
```
## How to use the detector:

```python
from transformers import pipeline
from arabert.preprocess import ArabertPreprocessor

processor = ArabertPreprocessor(model="aubmindlab/araelectra-base-discriminator")
pipe = pipeline("sentiment-analysis", model = "aubmindlab/aragpt2-mega-detector-long")

text = " "
text_prep = processor.preprocess(text)
result = pipe(text_prep)
# [{'label': 'machine-generated', 'score': 0.9977743625640869}]
```

## Finetunning using `transformers`:

Follow the guide linked [here](https://towardsdatascience.com/fine-tuning-gpt2-on-colab-gpu-for-free-340468c92ed)

## Finetuning using our code with TF 1.15.4:

- Create the Training TFRecords:
```bash
python create_pretraining_data.py
 --input_file=<RAW TEXT FILE with documents/article sperated by an empty line>
 --output_file=<OUTPUT TFRecord>
 --tokenizer_dir=<Directory with the GPT2 Tokenizer files>
 ```

 - Finetuning:
 ```bash
 python3 run_pretraining.py \
 --input_file="gs://<GS_BUCKET>/pretraining_data/*" \
 --output_dir="gs://<GS_BUCKET>/pretraining_model/" \
 --config_file="config/small_hparams.json" \
 --batch_size=128 \
 --eval_batch_size=8 \
 --num_train_steps= \
 --num_warmup_steps= \
 --learning_rate= \
 --save_checkpoints_steps= \
 --max_seq_length=1024 \
 --max_eval_steps= \
 --optimizer="lamb" \
 --iterations_per_loop=5000 \
 --keep_checkpoint_max=10 \
 --use_tpu=True \
 --tpu_name=<TPU NAME> \
 --do_train=True \
 --do_eval=False
 ```
# Model Sizes

Model | Optimizer | Context size | Embedding Size | Num of heads | Num of layers | Model Size / Num of Params |
 ---|:---:|:---:|:---:|:---:|:---:|:---:
AraGPT2-base | `lamb` | 1024 | 768 | 12 | 12 | 527MB / 135M |
AraGPT2-medium | `lamb` | 1024 | 1024 | 16 | 24 | 1.4GB / 369M |
AraGPT2-large | `adafactor` | 1024 | 1280 | 20 | 36 | 2.98GB/792M |
AraGPT2-mega | `adafactor` | 1024 | 1536 | 24 | 48 | 5.5GB/1.46B |

## Compute

Model | Hardware | num of examples (seq len = 1024) | Batch Size | Num of Steps | Time (in days)
 ---|:---:|:---:|:---:|:---:|:---:
AraGPT2-base | TPUv3-128 | 9.7M | 1792 | 125K | 1.5
AraGPT2-medium | TPUv3-8 | 9.7M | 80 | 1M | 15
AraGPT2-large | TPUv3-128 | 9.7M | 256 | 220k | 3
AraGPT2-mega | TPUv3-128 | 9.7M | 256 | 780K | 9

# Results

The results show in the table below are the perplexity values on wikipedia articles that are not in the training data.

Model | PPL |
 ---|:---:
AraGPT2-base | 55.8
AraGPT2-medium | 45.7
AraGPT2-large | 36.6
AraGPT2-mega | 29.8


# Disclaimer

The text generated by AraGPT2 Arabic is automatically generated by a neural network model trained on a large amount of texts, which does not represent the authors' or their institutes' official attitudes and preferences. The text generated by AraGPT2 should only be used for research and scientific purposes. If it infringes on your rights and interests or violates social morality, please do not propagate it.

# If you used this model please cite us as :

```
@inproceedings{antoun-etal-2021-aragpt2,
    title = "{A}ra{GPT}2: Pre-Trained Transformer for {A}rabic Language Generation",
    author = "Antoun, Wissam  and
      Baly, Fady  and
      Hajj, Hazem",
    booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
    month = apr,
    year = "2021",
    address = "Kyiv, Ukraine (Virtual)",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2021.wanlp-1.21",
    pages = "196--207",
}
```


# Acknowledgments
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT.

# Contacts
**Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <wfa07@mail.aub.edu> | <wissam.antoun@gmail.com>