File size: 25,479 Bytes
bfada3c a479bac d7c7a93 a479bac b62df1e bfada3c a479bac edcaa5d b62df1e d7c7a93 b62df1e a479bac b62df1e a479bac b62df1e a479bac b62df1e edcaa5d b62df1e edcaa5d a479bac edcaa5d a479bac d7c7a93 14b7fc4 446e362 d7c7a93 9e76dcc 14b7fc4 9465621 446e362 14b7fc4 b62df1e 14b7fc4 446e362 b62df1e 446e362 d7c7a93 446e362 b62df1e a479bac b62df1e bfada3c b62df1e d7c7a93 b62df1e 9465621 bfada3c 446e362 b62df1e bfada3c b62df1e d7c7a93 b62df1e bfada3c b62df1e bfada3c d7c7a93 bfada3c d7c7a93 bfada3c d7c7a93 14b7fc4 bfada3c d7c7a93 14b7fc4 d7c7a93 bfada3c 14b7fc4 b62df1e bfada3c 9e76dcc b62df1e bfada3c b62df1e 14b7fc4 b62df1e 9e76dcc bfada3c 14b7fc4 9465621 9e76dcc bfada3c 14b7fc4 bfada3c 14b7fc4 bfada3c 14b7fc4 bfada3c 14b7fc4 bfada3c d7c7a93 bfada3c d7c7a93 446e362 d7c7a93 b62df1e d7c7a93 b62df1e 14b7fc4 b62df1e bfada3c b62df1e bcea466 b62df1e d7c7a93 b62df1e 14b7fc4 b62df1e d7c7a93 bcea466 b62df1e d7c7a93 b62df1e d7c7a93 b62df1e d7c7a93 b62df1e 7cc3b2c a479bac 14b7fc4 b62df1e bfada3c d7c7a93 b62df1e d7c7a93 b62df1e d7c7a93 a479bac d7c7a93 b62df1e d7c7a93 a479bac 9e76dcc 4487bd6 d7c7a93 4487bd6 14b7fc4 b62df1e 9e76dcc d7c7a93 edcaa5d b62df1e edcaa5d b62df1e d7c7a93 446e362 d7c7a93 a479bac bcea466 edcaa5d b62df1e 14b7fc4 b62df1e d7c7a93 b62df1e d7c7a93 14b7fc4 7cc3b2c b62df1e 9e76dcc 7cc3b2c a479bac edcaa5d a479bac b62df1e bfada3c b62df1e d7c7a93 b62df1e d7c7a93 b62df1e a479bac d7c7a93 a479bac b62df1e d7c7a93 a479bac 9e76dcc a479bac b62df1e a479bac b62df1e a479bac b62df1e 7cc3b2c a479bac b62df1e 7cc3b2c a479bac b62df1e 9e76dcc a479bac fd4647c b62df1e d7c7a93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 |
import warnings
import os
import logging
from itertools import chain
import torch
from torch import nn, Tensor, einsum
from typing import Optional
import numpy as np
from dataclasses import dataclass
from einops import rearrange
from datasets import load_dataset, Audio
from echoutils import extract_features, setup_tokenizer, compute_metrics, DataCollator, preprocess_logits_for_metrics, sinusoids, get_activation
from datetime import datetime
from transformers.trainer_seq2seq import Seq2SeqTrainer
from transformers.training_args_seq2seq import Seq2SeqTrainingArguments
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dtype = torch.float32
warnings.filterwarnings("ignore")
logging.basicConfig(level=logging.ERROR)
def there_is_a(val):
return val is not None
@dataclass
class Dimensions:
vocab: int
mels: int
ctx: int
dims: int
head: int
layer: int
act: str
def qkv_init(dims, head):
head_dim = dims // head
q = nn.Linear(dims, dims)
k = nn.Linear(dims, dims)
v = nn.Linear(dims, dims)
o = nn.Linear(dims, dims)
lna = nn.LayerNorm(dims)
lnb = nn.LayerNorm(dims)
lnc = nn.LayerNorm(head_dim)
lnd = nn.LayerNorm(head_dim)
return q, k, v, o, lna, lnb, lnc, lnd
def shape(dims, head, q, k, v):
batch_size = q.shape[0]
seq_len_q = q.shape[1]
seq_len_kv = k.shape[1]
head_dim = dims // head
q = q.view(batch_size, seq_len_q, head, head_dim).transpose(1, 2)
k = k.view(batch_size, seq_len_kv, head, head_dim).transpose(1, 2)
v = v.view(batch_size, seq_len_kv, head, head_dim).transpose(1, 2)
return q, k, v
class rotary(nn.Module):
def __init__(self, dims, head):
super(rotary, self).__init__()
self.dims = dims
self.head = head
self.head_dim = dims // head
self.theta = nn.Parameter((torch.tensor(10000, device=device, dtype=dtype)), requires_grad=True)
self.register_buffer('freqs_base', self._compute_freqs_base(), persistent=False)
def _compute_freqs_base(self):
mel_scale = torch.pow(10, torch.linspace(0, 2595 * torch.log10(torch.tensor(1 + 4000/200)), self.head_dim // 2, device=device, dtype=dtype) / 2595) - 1
return 200 * mel_scale / 1000
def forward(self, x) -> Tensor:
freqs = (self.theta / 220.0) * self.freqs_base
pos = torch.arange(x.shape[2], device=device, dtype=dtype)
freqs = pos[:, None] * freqs
freqs=torch.polar(torch.ones_like(freqs), freqs)
x1 = x[..., :freqs.shape[-1]*2]
x2 = x[..., freqs.shape[-1]*2:]
orig_shape = x1.shape
x1 = x1.float().reshape(*x1.shape[:-1], -1, 2).contiguous()
x1 = torch.view_as_complex(x1) * freqs
x1 = torch.view_as_real(x1).flatten(-2)
x1 = x1.view(orig_shape)
return torch.cat([x1.type_as(x), x2], dim=-1)
def calculate_attention(q, k, v, mask=None, temp=1.0, pytorch=True):
scaled_q = q
if temp != 1.0 and temp > 0:
scaled_q = q * (1.0 / temp)**.5
if pytorch:
out = torch.nn.functional.scaled_dot_product_attention(scaled_q, k, v, is_causal=mask is not None and q.shape[1] > 1)
else:
scale = q.shape[-1] ** -0.35
qk = (q * scale) @ (k * scale).transpose(-1, -2)
if there_is_a(mask):
mask = mask[:qk.shape[2], :qk.shape[2]]
qk = qk.masked_fill(mask.bool(), -torch.inf)
qk = qk.float()
w = torch.nn.functional.softmax(qk, dim=-1).to(q.dtype)
out = (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2)
qk = qk.detach()
return out
class LocalOut(nn.Module):
def __init__(self, dims: int, head: int):
super().__init__()
self.head_dim = dims // head
self.dims = dims
self.q_hd = nn.Linear(self.head_dim, self.head_dim)
self.k_hd = nn.Linear(self.head_dim, self.head_dim)
self.v_hd = nn.Linear(self.head_dim, self.head_dim)
self.out = nn.Linear(self.head_dim, self.head_dim)
def _reshape_to_output(self, attn_output: Tensor) -> Tensor:
batch, _, ctx, _ = attn_output.shape
return attn_output.transpose(1, 2).contiguous().view(batch, ctx, self.dims)
class attentionb(nn.Module):
def __init__(self, dims: int, head: int, max_iter: int = 3, threshold: float = 0.5, temp = 1.0):
super(attentionb, self).__init__()
self.head = head
self.dims = dims
self.head_dim = dims // head
self.que = nn.Linear(dims, dims, bias=False)
self.kv = nn.Linear(dims, dims * 2, bias=False)
self.out = nn.Linear(dims, dims, bias=False)
self.lna = nn.LayerNorm(dims)
self.lnb = nn.LayerNorm(dims // head)
self.rope = rotary(dims, head)
self.max_iter = max_iter
self.threshold = nn.Parameter(torch.tensor(threshold), requires_grad=True)
self.temp = nn.Parameter(torch.tensor(temp), requires_grad=True)
self.local = LocalOut(dims, head)
def update_win(self, win_size=None):
if win_size is not None:
self.win_size = win_size
return win_size
elif hasattr(self, 'win_size') and self.win_size is not None:
win_size = self.win_size
return win_size
return None
def _focus(self, x, xa = None, mask = None, win_size=None):
q = self.que(self.lna(x))
k, v = self.kv(self.lna(x if xa is None else xa)).chunk(2, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b c (h d) -> b h c d', h = self.head), (q, k, v))
self.scale = q.shape[-1] ** -0.35
q = self.rope(q)
k = self.rope(k)
iteration = 0
temp = self.temp.item()
prev_out = torch.zeros_like(q)
attn_out = torch.zeros_like(q)
threshold = self.threshold
curq = q #if curq is None else curq
while iteration < self.max_iter:
eff_span = curq.shape[2]
if eff_span == 0:
break
qiter = curq[:, :, :eff_span, :]
kiter = k[:, :, :eff_span, :]
viter = v[:, :, :eff_span, :]
q = self.local.q_hd(qiter)
k = self.local.k_hd(kiter)
v = self.local.v_hd(viter)
iter_mask = None
if mask is not None:
if mask.dim() == 4:
iter_mask = mask[:, :, :eff_span, :eff_span]
elif mask.dim() == 2:
iter_mask = mask[:eff_span, :eff_span]
attn_iter = calculate_attention(
self.lnb(q), self.lnb(k), v,
mask=iter_mask, temp=temp)
iter_out = torch.zeros_like(curq)
iter_out[:, :, :eff_span, :] = attn_iter
diff = torch.abs(iter_out - prev_out).mean()
if diff < threshold and iteration > 0:
attn_out = iter_out
break
prev_out = iter_out.clone()
curq = curq + iter_out
attn_out = iter_out
iteration += 1
temp -= 0.005
return rearrange(attn_out, 'b h c d -> b c (h d)')
def _slide_win_local(self, x, mask = None) -> Tensor:
win = self.update_win()
win_size = win if win is not None else self.head_dim
span_len = win_size + win_size // self.head
_, ctx, _ = x.shape
out = torch.zeros_like(x)
windows = (ctx + win_size - 1) // win_size
for i in range(windows):
qstart = i * win_size
qend = min(qstart + win_size, ctx)
qlen = qend - qstart
if qlen == 0:
continue
kstart = max(0, qend - span_len)
qwin = x[:, qstart:qend, :]
kwin = x[:, kstart:qend, :]
win_mask = None
if mask is not None:
if mask.dim() == 4:
win_mask = mask[:, :, qstart:qend, kstart:qend]
elif mask.dim() == 2:
win_mask = mask[qstart:qend, kstart:qend]
attn_out = self._focus(x=qwin, xa=kwin, mask=win_mask, win_size=win_size)
out[:, qstart:qend, :] = attn_out
return out
def forward(self, x, xa = None, mask = None):
x = self._slide_win_local(x, mask=None)
xa = self._slide_win_local(xa, mask=None)
out = self._focus(x, xa, mask=None)
return self.out(out)
def scaled_relu(x, sequence_length):
relu_output = torch.relu(x)
return relu_output / sequence_length
def taylor_softmax(x, order=2):
taylor_approx = 1.0
for i in range(1, order + 1):
factorial_i = torch.exp(torch.lgamma(torch.tensor(i + 1, dtype=torch.float32)))
taylor_approx += x**i / factorial_i
return taylor_approx / torch.sum(taylor_approx, dim=-1, keepdim=True)
def taylor_softmax_2nd_order(x):
exp_approx = 1 + x + (x**2) / 2
return exp_approx / torch.sum(exp_approx, dim=-1, keepdim=True)
def cos_sim(q: Tensor, k: Tensor, v: Tensor, mask) -> Tensor:
q_norm = torch.nn.functional.normalize(q, dim=-1, eps=1e-12)
k_norm = torch.nn.functional.normalize(k, dim=-1, eps=1e-12)
qk_cosine = torch.matmul(q_norm, k_norm.transpose(-1, -2))
qk_cosine = qk_cosine + mask
weights = F.softmax(qk_cosine, dim=-1)
out = torch.matmul(weights, v)
return out
class attentiona(nn.Module):
def __init__(self, dims: int, head: int, dropout_rate: float = 0.1):
super().__init__()
self.head = head
self.dims = dims
self.que = nn.Linear(dims, dims, bias=False)
self.kv = nn.Linear(dims, dims * 2, bias=False)
self.out = nn.Linear(dims, dims, bias=False)
self.ln = nn.LayerNorm(dims)
self.rope = rotary(dims, head)
def forward(self, x, xa = None, mask = None):
q = self.que(self.ln(x))
k, v = self.kv(self.ln(x if xa is None else xa)).chunk(2, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b c (h d) -> b h c d', h = self.head), (q, k, v))
scale = q.shape[-1] ** -0.5
q = self.rope(q)
k = self.rope(k)
qk = einsum('b h k d, b h q d -> b h k q', q, k) * scale
if there_is_a(mask):
mask = mask[:qk.shape[2], :qk.shape[2]]
qk = qk.masked_fill(mask.bool(), -torch.inf)
qk = taylor_softmax(qk, order=2) # qk = torch.nn.functional.softmax(qk, dim=-1)
wv = einsum('b h k q, b h q d -> b h k d', qk, v)
wv = rearrange(wv, 'b h c d -> b c (h d)')
out = self.out(wv)
return out
class attentiond(nn.Module):
def __init__(self, dims: int, head: int):
super().__init__()
self.head = head
self.dims = dims
self.que = nn.Linear(dims, dims, bias=False)
self.kv = nn.Linear(dims, dims * 2, bias=False)
self.out = nn.Linear(dims, dims, bias=False)
self.ln = nn.LayerNorm(dims)
self.rope = rotary(dims, head)
self.x = nn.Conv2d(head, head, 1, bias = False)
self.xa = nn.Conv2d(head, head, 1, bias = False)
def forward(self, x, xa = None, mask = None):
qk, v = self.kv(self.ln(x)).chunk(2, dim=-1)
qka, va = self.kv(self.ln(x if xa is None else xa)).chunk(2, dim=-1)
qk, qka, v, va = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.head), (qk, qka, v, va))
qk = einsum('b h q d, b h k d -> b h q k', qk, qka)
if there_is_a(mask):
mask = mask[:qk.shape[2], :qk.shape[2]]
qk = qk.masked_fill(mask.bool(), -torch.inf)
x = qk.softmax(dim = -1)
xa = qk.softmax(dim = -2)
x = self.x(x)
xa = self.xa(xa)
x = einsum('b h i j, b h j d -> b h i d', x, va)
xa = einsum('b h j i, b h j d -> b h i d', xa, v)
x, xa = map(lambda t: rearrange(t, 'b h n d -> b n (h d)'), (x, xa))
out = self.out(x)
return out
class tgate(nn.Module):
def __init__(self, dims, num_types=4):
super().__init__()
self.gates = nn.ModuleList([nn.Sequential(nn.Linear(dims, dims), nn.Sigmoid()) for _ in range(num_types)])
self.classifier = nn.Sequential(nn.Linear(dims, num_types), torch.nn.functional.Softmax(dim=-1))
def forward(self, x):
types = self.classifier(x)
gates = torch.stack([gate(x) for gate in self.gates], dim=-1)
cgate = torch.sum(gates * types.unsqueeze(2), dim=-1)
return cgate
class residual(nn.Module):
def __init__(self, dims: int, head: int, act: str = "silu"):
super().__init__()
self.lna = nn.LayerNorm(dims, bias=False)
self.atta = attentiona(dims, head)
self.attb = attentionb(dims, head, max_iter=1)
self.attc = attentiond(dims, head)
self.tgate = tgate(dims, num_types=1)
self.mlp = nn.Sequential(nn.Linear(dims, dims*4), get_activation(act), nn.Linear(dims*4, dims))
def forward(self, x: Tensor, xa = None, mask = None):
out = self.atta(x, mask=mask)
if x.shape == out.shape:
x = x + out
else:
x = out
if xa is not None:
x = x + self.atta(x, xa, mask=None)
x = x + self.tgate(x)
x = x + self.mlp(self.lna(x))
return x
class processor(nn.Module):
def __init__(self, vocab: int, mels: int, ctx: int, dims: int, head: int, layer: int, act: str = "gelu"):
super(processor, self).__init__()
self.ln = nn.LayerNorm(dims)
self.token = nn.Embedding(vocab, dims)
self.audio = lambda length, dims, max_tscale: sinusoids(length, dims, max_tscale)
self.positions = nn.Parameter(torch.empty(ctx, dims), requires_grad=True)
self.blend = nn.Parameter(torch.tensor(0.5, device=device, dtype=dtype), requires_grad=True)
act_fn = get_activation(act)
self.encoder = nn.Sequential(
nn.Conv1d(1, dims, kernel_size=3, stride=1, padding=1), act_fn,
nn.Conv1d(dims, dims, kernel_size=3, stride=1, padding=1), act_fn,
nn.Conv1d(dims, dims, kernel_size=3, stride=1, padding=1, groups=dims), act_fn)
self.blocka = nn.ModuleList([residual(dims, head, act_fn) for _ in range(layer)])
self.blockm = nn.ModuleList([residual(dims, head, act_fn) for _ in range(2)])
mask = torch.triu(torch.ones(ctx, ctx), diagonal=1)
mask = torch.empty(ctx, ctx).fill_(-np.inf).triu_(1)
self.register_buffer("mask", mask, persistent=False)
def forward(self, x, xa, xb, sequential=False, modal=False, blend=False, kv_cache=None) -> Tensor:
if xa.dim() == 2:
xa = xa.unsqueeze(0)
offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
x = (self.token(x.long()) + self.positions[offset : offset + x.shape[-1]])
xa = self.encoder(xa).permute(0, 2, 1)
xa = xa + self.audio(xa.shape[1], xa.shape[-1], 36000.0).to(device, dtype)
for block in chain(self.blocka or []):
xa = block(xa, mask=None)
x = block(x, mask=self.mask)
x = block(x, xa, mask=None)
if blend:
if sequential:
y = x
else:
a = torch.sigmoid(self.blend)
x = a * x + (1 - a) * y
for block in chain(self.blockm or []):
xm = block(torch.cat([x, xa], dim=1), torch.cat([x, xa], dim=1), mask=None) if modal else None
x = block(xm[:, :x.shape[1]], xm[:, x.shape[1]:], mask=None) if modal else x
if blend:
if sequential:
y = x
else:
a = torch.sigmoid(self.blend)
x = a * x + (1 - a) * y
x = nn.functional.dropout(x, p=0.001, training=self.training)
x = self.ln(x)
x = x @ torch.transpose(self.token.weight.to(dtype), 0, 1).float()
return x
class Model(nn.Module):
def __init__(self, param: Dimensions):
super().__init__()
self.param = param
self.processor = processor(
vocab=param.vocab,
mels=param.mels,
ctx=param.ctx,
dims=param.dims,
head=param.head,
layer=param.layer,
act=param.act)
self.best_loss = float('inf')
self.factor = nn.Parameter(torch.tensor(2), requires_grad=False)
def update(self, win_size):
for name, module in self.processor.named_modules():
if isinstance(module, (attentionb)):
module.update_win(win_size)
def adjust_window(self, loss, ctx):
self.win_size = ((ctx // self.param.head))
if loss < self.best_loss:
win_size = (self.win_size * self.factor)
else:
win_size = (self.win_size // self.factor).clamp(0, self.win_size - 1)
self.win_size = win_size
self.best_loss = loss
self.update(win_size)
return win_size
def forward(self, labels=None, input_ids=None, pitch=None, pitch_tokens=None, spectrogram=None, waveform=None):
x = input_ids
xa = pitch
xb = spectrogram
enc = {}
if spectrogram is not None:
enc["spectrogram"] = spectrogram
if waveform is not None:
enc["waveform"] = waveform
if pitch is not None:
enc["pitch"] = pitch
logits = self.processor(x, xa, xb)
loss = None
if labels is not None:
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.shape[-1]), labels.view(-1), ignore_index=0)
self.adjust_window(loss=loss.item(), ctx=xa.shape[1])
return {"logits": logits, "loss": loss}
def _init_weights(self, module):
self.init_counts = {
"Linear": 0, "Conv1d": 0, "LayerNorm": 0, "RMSNorm": 0,
"Conv2d": 0, "processor": 0, "attention": 0, "Residual": 0}
for name, module in self.named_modules():
if isinstance(module, nn.RMSNorm):
nn.init.ones_(module.weight)
self.init_counts["RMSNorm"] += 1
if isinstance(module, nn.LayerNorm):
nn.init.ones_(module.weight)
self.init_counts["LayerNorm"] += 1
elif isinstance(module, nn.Linear):
if module.weight is not None:
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Linear"] += 1
elif isinstance(module, nn.Conv1d):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Conv1d"] += 1
elif isinstance(module, nn.Conv2d):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.init_counts["Conv2d"] += 1
elif isinstance(module, residual):
self.init_counts["Residual"] += 1
elif isinstance(module, processor):
self.init_counts["processor"] += 1
def init_weights(self):
print("Initializing model weights...")
self.apply(self._init_weights)
print("Initialization summary:")
for module_type, count in self.init_counts.items():
if count > 0:
print(f"{module_type}: {count}")
def install_kv_cache_hooks(self, cache: Optional[dict] = None):
cache = {**cache} if cache is not None else {}
hooks = []
def save_to_cache(module, _, output):
if module not in cache or output.shape[1] > self.param.ctx:
cache[module] = output
else:
cache[module] = torch.cat([cache[module], output], dim=1).detach()
return cache[module]
def install_hooks(layer: nn.Module):
if isinstance(layer, attentiona):
hooks.append(layer.k.register_forward_hook(save_to_cache))
hooks.append(layer.v.register_forward_hook(save_to_cache))
self.processor.apply(install_hooks)
return cache, hooks
### "pipeline"
def prepare_datasets(tokenizer, token, sanity_check=False, sample_rate=16000, streaming=True, load_saved=False, save_dataset=True, cache_dir='E:/hf', extract_args=None, max_ctx=2048):
if load_saved:
if cache_dir is None:
cache_dir = cache_dir
else:
cache_dir = cache_dir
os.makedirs(cache_dir, exist_ok=True)
cache_file_train = os.path.join(cache_dir, "train.arrow")
cache_file_test = os.path.join(cache_dir, "test.arrow")
if os.path.exists(cache_file_train) and os.path.exists(cache_file_test):
from datasets import Dataset
train_dataset = Dataset.load_from_disk(cache_file_train)
test_dataset = Dataset.load_from_disk(cache_file_test)
return train_dataset, test_dataset
def filter_func(x):
return (0 < len(x["transcription"]) < max_ctx and
len(x["audio"]["array"]) > 0 and
len(x["audio"]["array"]) < max_ctx * 160)
raw_train = load_dataset("mozilla-foundation/common_voice_17_0", "en", token=token, split="train", trust_remote_code=True, streaming=True).rename_column("sentence", "transcription")
raw_test = load_dataset("mozilla-foundation/common_voice_17_0", "en", token=token, split="test", trust_remote_code=True, streaming=True).rename_column("sentence", "transcription").take(1000)
raw_train = raw_train.filter(filter_func).cast_column("audio", Audio(sampling_rate=sample_rate))
raw_test = raw_test.filter(filter_func).cast_column("audio", Audio(sampling_rate=sample_rate))
train_dataset = raw_train.map(lambda x: extract_features(x, tokenizer, **extract_args)).remove_columns(["audio", "transcription"])
test_dataset = raw_test.map(lambda x: extract_features(x, tokenizer, **extract_args)).remove_columns(["audio", "transcription"])
train_dataset.save_to_disk(cache_file_train) if save_dataset is True else None
test_dataset.save_to_disk(cache_file_test) if save_dataset is True else None
return train_dataset, test_dataset
def main():
token = ""
log_dir = os.path.join('D:/newmodel/output/logs/', datetime.now().strftime('%m-%d_%H_%M_%S'))
os.makedirs(log_dir, exist_ok=True)
tokenizer = setup_tokenizer("D:/newmodel/mod5/tokenizer.json")
extract_args = {
"waveform": True,
"spec": True,
"pitch_tokens": True,
"pitch": True,
"harmonics": False,
"aperiodics": False,
"phase_mod": False,
"crepe": False,
"sample_rate": 16000,
"hop_length": 256,
"mode": "mean",
"debug": False,
}
param = Dimensions(vocab=40000, mels=128, ctx=2048, dims=512, head=4, layer=4, act="swish")
train_dataset, test_dataset = prepare_datasets(tokenizer, token, sanity_check=False, sample_rate=16000, streaming=False,
load_saved=False, save_dataset=False, cache_dir=None, extract_args=extract_args, max_ctx=param.ctx)
model = Model(param).to('cuda')
print(f"Trainable parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad):,}")
print(f"Total parameters: {sum(p.numel() for p in model.parameters()):,}")
from functools import partial
metrics_fn = partial(compute_metrics, print_pred=True, num_samples=1, tokenizer=tokenizer, model=model)
training_args = Seq2SeqTrainingArguments(
output_dir=log_dir,
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
max_steps=100000,
eval_steps=1000,
save_steps=1000,
warmup_steps=1000,
logging_steps=100,
logging_dir=log_dir,
logging_strategy="steps",
eval_strategy="steps",
save_strategy="no",
report_to=["tensorboard"],
push_to_hub=False,
save_total_limit=1,
label_names=["labels"],
save_safetensors=False,
eval_on_start=False,
batch_eval_metrics=False,
disable_tqdm=False,
include_tokens_per_second=True,
include_num_input_tokens_seen=True,
learning_rate=0.00025,
weight_decay=0.025,
)
optimizer = torch.optim.AdamW(model.parameters(), lr=training_args.learning_rate, eps=1e-8, weight_decay=training_args.weight_decay, betas=(0.9, 0.999), amsgrad=False, foreach=False, fused=False, capturable=False, differentiable=False, maximize=False)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=training_args.max_steps, eta_min=1e-9, last_epoch=-1)
trainer = Seq2SeqTrainer(
args=training_args,
model=model,
train_dataset=train_dataset,
eval_dataset=test_dataset,
data_collator=DataCollator(tokenizer=tokenizer),
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
compute_metrics=metrics_fn,
optimizers=(optimizer, scheduler)
)
model.init_weights()
trainer.train()
if __name__ == "__main__":
main()
|