File size: 1,618 Bytes
66a623b
 
82e22a3
66a623b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82e22a3
66a623b
f547bb6
 
 
 
 
66a623b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f547bb6
 
66a623b
 
 
de9b7c5
66a623b
 
 
f547bb6
 
 
 
66a623b
 
 
 
de9b7c5
66a623b
de9b7c5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: trainer3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# trainer3

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5377
- Precision: 0.8306
- Recall: 0.8272
- F1: 0.8274
- Accuracy: 0.8272

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.0119        | 2.2222 | 100  | 0.6056          | 0.8215    | 0.8131 | 0.8129 | 0.8131   |
| 0.229         | 4.4444 | 200  | 0.5377          | 0.8306    | 0.8272 | 0.8274 | 0.8272   |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1