File size: 5,739 Bytes
98c533d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# %pip install sentencepiece
# %pip install datasets
# %pip install seqio
import unicodedata
import os
import nltk
from tqdm import tqdm
import glob
from random import sample
def sample_and_make_tempfile(sentences_dir, num_files):
""" Use the set of files containing a sentence per line,
sample num_files out of those and save as a temp file """
sentence_files = glob.glob(sentences_dir + "/*.txt")
# sample num_files
sampled_files=sample(sentence_files, num_files)
print("sampled files:")
print(sampled_files)
#read all the lines from sampled files and save to a list
all_lines = []
for filename in sampled_files:
with open(filename) as f:
lines = f.read().splitlines()
all_lines.extend(lines)
print("number of lines sampled:", len(all_lines))
#combine into a single file and save
tempfile_path = os.path.join("text", "temp.txt")
with open(tempfile_path, "w") as f:
for sentence in tqdm(all_lines):
# remove newlines
line = sentence.strip()
# do not save empty items such as
if sentence != []:
f.writelines(sentence + '\n')
print("Wrote to ", tempfile_path)
return tempfile_path
def chunks(sentences, n, tot_len):
"""Yield successive n-sized chunks from sentences."""
for i in range(0, tot_len, n):
end_i = min(len(sentences),i + n)
yield sentences[i:end_i]["text"]
def make_sentence_files(dataset, chunksize = 5600000, data_dir = 'text/sentences'):
"""
Make a sentence per line files, chuncsize sentences per file"""
# make sure data dir exists
if not os.path.exists(data_dir):
os.makedirs(data_dir)
# use simple regex for sentence tokenizing
sent_detector = nltk.RegexpTokenizer(u'[^ !?。]*[!?。.\n]')
# loop over the chunks
for chunk_ind, sentence_chunk in enumerate(chunks(dataset, chunksize, len(dataset))):
# new file for each chunk
filename = "sent_{}.txt".format(chunk_ind)
filepath = os.path.join(data_dir, filename)
print("writing to ", filepath)
with open(filepath, "w") as f:
for sentence in tqdm(sentence_chunk):
# remove newlines
line = sentence.strip()
# unicode normalize japanese spaces etc
unicodedata.normalize('NFKC', line)
# tokenize into sentences
sentences = sent_detector.tokenize(line)
# do not save empty items such as
if sentences != []:
f.writelines(s + '\n' for s in sentences)
def combine_files(output_file, *files):
"""
Combines the contents of multiple text files into a single file.
:param output_file: Path to the output file.
:param files: Paths to the files to be combined.
:return: Total number of lines in the combined file.
"""
total_lines = 0
with open(output_file, 'w') as outfile:
for file in files:
with open(file, 'r') as infile:
lines = infile.readlines()
total_lines += len(lines)
outfile.writelines(lines)
# Add a newline for separation (optional)
outfile.write('\n')
return total_lines
# make sentence files from hugingface dataset
dataset_bio = datasets.load_dataset("Siddharth63/biological_dataset")
make_sentence_files(dataset_bio["train"])
# combine files to get 45 million sentences
files_to_combine = glob.glob("text/sentences/*.txt")
files_to_combine = files_to_combine[:2]
total_lines = combine_files(output_file_path, *files_to_combine)
# Train the sentencepiece transformers on 45 million sentences
import sentencepiece as spm
spm.SentencePieceTrainer.train(input="text/final_file.txt", model_prefix='spiece', vocab_size=32000, character_coverage=1.0,
pad_id=0, unk_id=2, eos_id=1, bos_id=-1,
user_defined_symbols=['[NLU]', '[NLG]', '[S2S]'],
train_extremely_large_corpus=True,
num_threads=90, input_sentence_size=45000000, shuffle_input_sentence=True)
# Add 100 extra tokens to the model
from seqio import SentencePieceVocabulary
import os
import tensorflow as tf
from sentencepiece import SentencePieceProcessor, sentencepiece_model_pb2
def add_100extra(vocab: SentencePieceVocabulary, out_dir: str):
tf.io.gfile.makedirs(out_dir)
tf.io.gfile.GFile(os.path.join(out_dir, 'spiece.model'), 'w').write(vocab.sp_model)
model = sentencepiece_model_pb2.ModelProto.FromString(vocab.sp_model)
tf.io.gfile.GFile(os.path.join(out_dir, 'spiece.vocab'), 'w').write(
'\n'.join(f'{p.piece}\t{p.score}' for p in model.pieces)
)
# vocab = t5.data.get_default_vocabulary()
# out_dir = "../vocabulary/cc_all.32000.100extra"
#
# add_100extra(vocab, out_dir)
#
# vocab = seqio.SentencePieceVocabulary("../vocabulary/nedd.32000/spiece.model", extra_ids=100)
# out_dir = "../vocabulary/nedd.32000.100extra"
# add_100extra(vocab, out_dir)
#
# vocab = seqio.SentencePieceVocabulary("../vocabulary/nedd.32000/spiece.model", extra_ids=128)
# out_dir = "../vocabulary/nedd.32000.128extra"
# add_100extra(vocab, out_dir)
#
vocab = SentencePieceVocabulary("/Users/sdeshpande/Desktop/Challenges/patents/spiece_45.model", extra_ids=100)
out_dir = "conv"
add_100extra(vocab, out_dir) |