File size: 2,459 Bytes
ce5618e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import dataclasses

import jax

from openpi.models import pi0
from openpi.training import config as _config
from openpi.training import data_loader as _data_loader


def test_torch_data_loader():
    config = pi0.Pi0Config(action_dim=24, action_horizon=50, max_token_len=48)
    dataset = _data_loader.FakeDataset(config, 16)

    loader = _data_loader.TorchDataLoader(
        dataset,
        local_batch_size=4,
        num_batches=2,
    )
    batches = list(loader)

    assert len(batches) == 2
    for batch in batches:
        assert all(x.shape[0] == 4 for x in jax.tree.leaves(batch))


def test_torch_data_loader_infinite():
    config = pi0.Pi0Config(action_dim=24, action_horizon=50, max_token_len=48)
    dataset = _data_loader.FakeDataset(config, 4)

    loader = _data_loader.TorchDataLoader(dataset, local_batch_size=4)
    data_iter = iter(loader)

    for _ in range(10):
        _ = next(data_iter)


def test_torch_data_loader_parallel():
    config = pi0.Pi0Config(action_dim=24, action_horizon=50, max_token_len=48)
    dataset = _data_loader.FakeDataset(config, 10)

    loader = _data_loader.TorchDataLoader(dataset, local_batch_size=4, num_batches=2, num_workers=2)
    batches = list(loader)

    assert len(batches) == 2

    for batch in batches:
        assert all(x.shape[0] == 4 for x in jax.tree.leaves(batch))


def test_with_fake_dataset():
    config = _config.get_config("debug")

    loader = _data_loader.create_data_loader(config, skip_norm_stats=True, num_batches=2)
    batches = list(loader)

    assert len(batches) == 2

    for batch in batches:
        assert all(x.shape[0] == config.batch_size for x in jax.tree.leaves(batch))

    for _, actions in batches:
        assert actions.shape == (config.batch_size, config.model.action_horizon, config.model.action_dim)


def test_with_real_dataset():
    config = _config.get_config("pi0_aloha_sim")
    config = dataclasses.replace(config, batch_size=4)

    loader = _data_loader.create_data_loader(
        config,
        # Skip since we may not have the data available.
        skip_norm_stats=True,
        num_batches=2,
        shuffle=True,
    )
    # Make sure that we can get the data config.
    assert loader.data_config().repo_id == config.data.repo_id

    batches = list(loader)

    assert len(batches) == 2

    for _, actions in batches:
        assert actions.shape == (config.batch_size, config.model.action_horizon, config.model.action_dim)