File size: 12,973 Bytes
29858c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# --------------------------------------------------------
# DenseFusion 6D Object Pose Estimation by Iterative Dense Fusion
# Licensed under The MIT License [see LICENSE for details]
# Written by Chen
# --------------------------------------------------------

import _init_paths
import argparse
import os
import random
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
from datasets.ycb.dataset import PoseDataset as PoseDataset_ycb
from datasets.linemod.dataset import PoseDataset as PoseDataset_linemod
from lib.network import PoseNet, PoseRefineNet
from lib.loss import Loss
from lib.loss_refiner import Loss_refine
from lib.utils import setup_logger

parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default = 'ycb', help='ycb or linemod')
parser.add_argument('--dataset_root', type=str, default = '', help='dataset root dir (''YCB_Video_Dataset'' or ''Linemod_preprocessed'')')
parser.add_argument('--batch_size', type=int, default = 8, help='batch size')
parser.add_argument('--workers', type=int, default = 10, help='number of data loading workers')
parser.add_argument('--lr', default=0.0001, help='learning rate')
parser.add_argument('--lr_rate', default=0.3, help='learning rate decay rate')
parser.add_argument('--w', default=0.015, help='learning rate')
parser.add_argument('--w_rate', default=0.3, help='learning rate decay rate')
parser.add_argument('--decay_margin', default=0.016, help='margin to decay lr & w')
parser.add_argument('--refine_margin', default=0.013, help='margin to start the training of iterative refinement')
parser.add_argument('--noise_trans', default=0.03, help='range of the random noise of translation added to the training data')
parser.add_argument('--iteration', type=int, default = 2, help='number of refinement iterations')
parser.add_argument('--nepoch', type=int, default=500, help='max number of epochs to train')
parser.add_argument('--resume_posenet', type=str, default = '',  help='resume PoseNet model')
parser.add_argument('--resume_refinenet', type=str, default = '',  help='resume PoseRefineNet model')
parser.add_argument('--start_epoch', type=int, default = 1, help='which epoch to start')
opt = parser.parse_args()


def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    if opt.dataset == 'ycb':
        opt.num_objects = 21 #number of object classes in the dataset
        opt.num_points = 1000 #number of points on the input pointcloud
        opt.outf = 'trained_models/ycb' #folder to save trained models
        opt.log_dir = 'experiments/logs/ycb' #folder to save logs
        opt.repeat_epoch = 1 #number of repeat times for one epoch training
    elif opt.dataset == 'linemod':
        opt.num_objects = 13
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        opt.repeat_epoch = 20
    else:
        print('Unknown dataset')
        return

    estimator = PoseNet(num_points = opt.num_points, num_obj = opt.num_objects)
    estimator.cuda()
    refiner = PoseRefineNet(num_points = opt.num_points, num_obj = opt.num_objects)
    refiner.cuda()

    if opt.resume_posenet != '':
        estimator.load_state_dict(torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

    if opt.resume_refinenet != '':
        refiner.load_state_dict(torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = True
        opt.decay_start = True
        opt.lr *= opt.lr_rate
        opt.w *= opt.w_rate
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        opt.refine_start = False
        opt.decay_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    if opt.dataset == 'ycb':
        dataset = PoseDataset_ycb('train', opt.num_points, True, opt.dataset_root, opt.noise_trans, opt.refine_start)
    elif opt.dataset == 'linemod':
        dataset = PoseDataset_linemod('train', opt.num_points, True, opt.dataset_root, opt.noise_trans, opt.refine_start)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=opt.workers)
    if opt.dataset == 'ycb':
        test_dataset = PoseDataset_ycb('test', opt.num_points, False, opt.dataset_root, 0.0, opt.refine_start)
    elif opt.dataset == 'linemod':
        test_dataset = PoseDataset_linemod('test', opt.num_points, False, opt.dataset_root, 0.0, opt.refine_start)
    testdataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=opt.workers)
    
    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'.format(len(dataset), len(test_dataset), opt.num_points_mesh, opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger('epoch%d' % epoch, os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        if opt.refine_start:
            estimator.eval()
            refiner.train()
        else:
            estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                points, choose, img, target, model_points, idx = data
                points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                                 Variable(choose).cuda(), \
                                                                 Variable(img).cuda(), \
                                                                 Variable(target).cuda(), \
                                                                 Variable(model_points).cuda(), \
                                                                 Variable(idx).cuda()
                pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
                loss, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c, target, model_points, idx, points, opt.w, opt.refine_start)
                
                if opt.refine_start:
                    for ite in range(0, opt.iteration):
                        pred_r, pred_t = refiner(new_points, emb, idx)
                        dis, new_points, new_target = criterion_refine(pred_r, pred_t, new_target, model_points, idx, new_points)
                        dis.backward()
                else:
                    loss.backward()

                train_dis_avg += dis.item()
                train_count += 1

                if train_count % opt.batch_size == 0:
                    logger.info('Train time {0} Epoch {1} Batch {2} Frame {3} Avg_dis:{4}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), epoch, int(train_count / opt.batch_size), train_count, train_dis_avg / opt.batch_size))
                    optimizer.step()
                    optimizer.zero_grad()
                    train_dis_avg = 0

                if train_count != 0 and train_count % 1000 == 0:
                    if opt.refine_start:
                        torch.save(refiner.state_dict(), '{0}/pose_refine_model_current.pth'.format(opt.outf))
                    else:
                        torch.save(estimator.state_dict(), '{0}/pose_model_current.pth'.format(opt.outf))

        print('>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(epoch))


        logger = setup_logger('epoch%d_test' % epoch, os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + ', ' + 'Testing started'))
        test_dis = 0.0
        test_count = 0
        estimator.eval()
        refiner.eval()

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, target, model_points, idx = data
            points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(model_points).cuda(), \
                                                             Variable(idx).cuda()
            pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
            _, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c, target, model_points, idx, points, opt.w, opt.refine_start)

            if opt.refine_start:
                for ite in range(0, opt.iteration):
                    pred_r, pred_t = refiner(new_points, emb, idx)
                    dis, new_points, new_target = criterion_refine(pred_r, pred_t, new_target, model_points, idx, new_points)

            test_dis += dis.item()
            logger.info('Test time {0} Test Frame No.{1} dis:{2}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), test_count, dis))

            test_count += 1

        test_dis = test_dis / test_count
        logger.info('Test time {0} Epoch {1} TEST FINISH Avg dis: {2}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), epoch, test_dis))
        if test_dis <= best_test:
            best_test = test_dis
            if opt.refine_start:
                torch.save(refiner.state_dict(), '{0}/pose_refine_model_{1}_{2}.pth'.format(opt.outf, epoch, test_dis))
            else:
                torch.save(estimator.state_dict(), '{0}/pose_model_{1}_{2}.pth'.format(opt.outf, epoch, test_dis))
            print(epoch, '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_test < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

        if best_test < opt.refine_margin and not opt.refine_start:
            opt.refine_start = True
            opt.batch_size = int(opt.batch_size / opt.iteration)
            optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)

            if opt.dataset == 'ycb':
                dataset = PoseDataset_ycb('train', opt.num_points, True, opt.dataset_root, opt.noise_trans, opt.refine_start)
            elif opt.dataset == 'linemod':
                dataset = PoseDataset_linemod('train', opt.num_points, True, opt.dataset_root, opt.noise_trans, opt.refine_start)
            dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=opt.workers)
            if opt.dataset == 'ycb':
                test_dataset = PoseDataset_ycb('test', opt.num_points, False, opt.dataset_root, 0.0, opt.refine_start)
            elif opt.dataset == 'linemod':
                test_dataset = PoseDataset_linemod('test', opt.num_points, False, opt.dataset_root, 0.0, opt.refine_start)
            testdataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=opt.workers)
            
            opt.sym_list = dataset.get_sym_list()
            opt.num_points_mesh = dataset.get_num_points_mesh()

            print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'.format(len(dataset), len(test_dataset), opt.num_points_mesh, opt.sym_list))

            criterion = Loss(opt.num_points_mesh, opt.sym_list)
            criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)

if __name__ == '__main__':
    main()