File size: 9,652 Bytes
29858c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import _init_paths
import argparse
import os
import copy
import random
import numpy as np
from PIL import Image
import scipy.io as scio
import scipy.misc
import numpy.ma as ma
import math
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import torch.nn.functional as F
from torch.autograd import Variable
from datasets.ycb.dataset import PoseDataset
from lib.network import PoseNet, PoseRefineNet
from lib.transformations import euler_matrix, quaternion_matrix, quaternion_from_matrix
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_root', type=str, default = '', help='dataset root dir')
parser.add_argument('--model', type=str, default = '', help='resume PoseNet model')
parser.add_argument('--refine_model', type=str, default = '', help='resume PoseRefineNet model')
opt = parser.parse_args()
norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
border_list = [-1, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680]
xmap = np.array([[j for i in range(640)] for j in range(480)])
ymap = np.array([[i for i in range(640)] for j in range(480)])
cam_cx = 312.9869
cam_cy = 241.3109
cam_fx = 1066.778
cam_fy = 1067.487
cam_scale = 10000.0
num_obj = 21
img_width = 480
img_length = 640
num_points = 1000
num_points_mesh = 500
iteration = 2
bs = 1
dataset_config_dir = 'datasets/ycb/dataset_config'
ycb_toolbox_dir = 'YCB_Video_toolbox'
result_wo_refine_dir = 'experiments/eval_result/ycb/Densefusion_wo_refine_result'
result_refine_dir = 'experiments/eval_result/ycb/Densefusion_iterative_result'
def get_bbox(posecnn_rois):
rmin = int(posecnn_rois[idx][3]) + 1
rmax = int(posecnn_rois[idx][5]) - 1
cmin = int(posecnn_rois[idx][2]) + 1
cmax = int(posecnn_rois[idx][4]) - 1
r_b = rmax - rmin
for tt in range(len(border_list)):
if r_b > border_list[tt] and r_b < border_list[tt + 1]:
r_b = border_list[tt + 1]
break
c_b = cmax - cmin
for tt in range(len(border_list)):
if c_b > border_list[tt] and c_b < border_list[tt + 1]:
c_b = border_list[tt + 1]
break
center = [int((rmin + rmax) / 2), int((cmin + cmax) / 2)]
rmin = center[0] - int(r_b / 2)
rmax = center[0] + int(r_b / 2)
cmin = center[1] - int(c_b / 2)
cmax = center[1] + int(c_b / 2)
if rmin < 0:
delt = -rmin
rmin = 0
rmax += delt
if cmin < 0:
delt = -cmin
cmin = 0
cmax += delt
if rmax > img_width:
delt = rmax - img_width
rmax = img_width
rmin -= delt
if cmax > img_length:
delt = cmax - img_length
cmax = img_length
cmin -= delt
return rmin, rmax, cmin, cmax
estimator = PoseNet(num_points = num_points, num_obj = num_obj)
estimator.cuda()
estimator.load_state_dict(torch.load(opt.model))
estimator.eval()
refiner = PoseRefineNet(num_points = num_points, num_obj = num_obj)
refiner.cuda()
refiner.load_state_dict(torch.load(opt.refine_model))
refiner.eval()
testlist = []
input_file = open('{0}/test_data_list.txt'.format(dataset_config_dir))
while 1:
input_line = input_file.readline()
if not input_line:
break
if input_line[-1:] == '\n':
input_line = input_line[:-1]
testlist.append(input_line)
input_file.close()
print(len(testlist))
class_file = open('{0}/classes.txt'.format(dataset_config_dir))
class_id = 1
cld = {}
while 1:
class_input = class_file.readline()
if not class_input:
break
class_input = class_input[:-1]
input_file = open('{0}/models/{1}/points.xyz'.format(opt.dataset_root, class_input))
cld[class_id] = []
while 1:
input_line = input_file.readline()
if not input_line:
break
input_line = input_line[:-1]
input_line = input_line.split(' ')
cld[class_id].append([float(input_line[0]), float(input_line[1]), float(input_line[2])])
input_file.close()
cld[class_id] = np.array(cld[class_id])
class_id += 1
for now in range(0, 2949):
img = Image.open('{0}/{1}-color.png'.format(opt.dataset_root, testlist[now]))
depth = np.array(Image.open('{0}/{1}-depth.png'.format(opt.dataset_root, testlist[now])))
posecnn_meta = scio.loadmat('{0}/results_PoseCNN_RSS2018/{1}.mat'.format(ycb_toolbox_dir, '%06d' % now))
label = np.array(posecnn_meta['labels'])
posecnn_rois = np.array(posecnn_meta['rois'])
lst = posecnn_rois[:, 1:2].flatten()
my_result_wo_refine = []
my_result = []
for idx in range(len(lst)):
itemid = lst[idx]
try:
rmin, rmax, cmin, cmax = get_bbox(posecnn_rois)
mask_depth = ma.getmaskarray(ma.masked_not_equal(depth, 0))
mask_label = ma.getmaskarray(ma.masked_equal(label, itemid))
mask = mask_label * mask_depth
choose = mask[rmin:rmax, cmin:cmax].flatten().nonzero()[0]
if len(choose) > num_points:
c_mask = np.zeros(len(choose), dtype=int)
c_mask[:num_points] = 1
np.random.shuffle(c_mask)
choose = choose[c_mask.nonzero()]
else:
choose = np.pad(choose, (0, num_points - len(choose)), 'wrap')
depth_masked = depth[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
xmap_masked = xmap[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
ymap_masked = ymap[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
choose = np.array([choose])
pt2 = depth_masked / cam_scale
pt0 = (ymap_masked - cam_cx) * pt2 / cam_fx
pt1 = (xmap_masked - cam_cy) * pt2 / cam_fy
cloud = np.concatenate((pt0, pt1, pt2), axis=1)
img_masked = np.array(img)[:, :, :3]
img_masked = np.transpose(img_masked, (2, 0, 1))
img_masked = img_masked[:, rmin:rmax, cmin:cmax]
cloud = torch.from_numpy(cloud.astype(np.float32))
choose = torch.LongTensor(choose.astype(np.int32))
img_masked = norm(torch.from_numpy(img_masked.astype(np.float32)))
index = torch.LongTensor([itemid - 1])
cloud = Variable(cloud).cuda()
choose = Variable(choose).cuda()
img_masked = Variable(img_masked).cuda()
index = Variable(index).cuda()
cloud = cloud.view(1, num_points, 3)
img_masked = img_masked.view(1, 3, img_masked.size()[1], img_masked.size()[2])
pred_r, pred_t, pred_c, emb = estimator(img_masked, cloud, choose, index)
pred_r = pred_r / torch.norm(pred_r, dim=2).view(1, num_points, 1)
pred_c = pred_c.view(bs, num_points)
how_max, which_max = torch.max(pred_c, 1)
pred_t = pred_t.view(bs * num_points, 1, 3)
points = cloud.view(bs * num_points, 1, 3)
my_r = pred_r[0][which_max[0]].view(-1).cpu().data.numpy()
my_t = (points + pred_t)[which_max[0]].view(-1).cpu().data.numpy()
my_pred = np.append(my_r, my_t)
my_result_wo_refine.append(my_pred.tolist())
for ite in range(0, iteration):
T = Variable(torch.from_numpy(my_t.astype(np.float32))).cuda().view(1, 3).repeat(num_points, 1).contiguous().view(1, num_points, 3)
my_mat = quaternion_matrix(my_r)
R = Variable(torch.from_numpy(my_mat[:3, :3].astype(np.float32))).cuda().view(1, 3, 3)
my_mat[0:3, 3] = my_t
new_cloud = torch.bmm((cloud - T), R).contiguous()
pred_r, pred_t = refiner(new_cloud, emb, index)
pred_r = pred_r.view(1, 1, -1)
pred_r = pred_r / (torch.norm(pred_r, dim=2).view(1, 1, 1))
my_r_2 = pred_r.view(-1).cpu().data.numpy()
my_t_2 = pred_t.view(-1).cpu().data.numpy()
my_mat_2 = quaternion_matrix(my_r_2)
my_mat_2[0:3, 3] = my_t_2
my_mat_final = np.dot(my_mat, my_mat_2)
my_r_final = copy.deepcopy(my_mat_final)
my_r_final[0:3, 3] = 0
my_r_final = quaternion_from_matrix(my_r_final, True)
my_t_final = np.array([my_mat_final[0][3], my_mat_final[1][3], my_mat_final[2][3]])
my_pred = np.append(my_r_final, my_t_final)
my_r = my_r_final
my_t = my_t_final
# Here 'my_pred' is the final pose estimation result after refinement ('my_r': quaternion, 'my_t': translation)
my_result.append(my_pred.tolist())
except ZeroDivisionError:
print("PoseCNN Detector Lost {0} at No.{1} keyframe".format(itemid, now))
my_result_wo_refine.append([0.0 for i in range(7)])
my_result.append([0.0 for i in range(7)])
scio.savemat('{0}/{1}.mat'.format(result_wo_refine_dir, '%04d' % now), {'poses':my_result_wo_refine})
scio.savemat('{0}/{1}.mat'.format(result_refine_dir, '%04d' % now), {'poses':my_result})
print("Finish No.{0} keyframe".format(now)) |