File size: 2,359 Bytes
3a9e1a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
audio:
chunk_size: 352768
dim_f: 1024
dim_t: 801
hop_length: 441
n_fft: 2048
num_channels: 2
sample_rate: 44100
min_mean_abs: 0.001
model:
dim: 384
depth: 10
stereo: true
num_stems: 1
time_transformer_depth: 1
freq_transformer_depth: 1
linear_transformer_depth: 0
freqs_per_bands: !!python/tuple
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 4
- 12
- 12
- 12
- 12
- 12
- 12
- 12
- 12
- 24
- 24
- 24
- 24
- 24
- 24
- 24
- 24
- 48
- 48
- 48
- 48
- 48
- 48
- 48
- 48
- 128
- 129
dim_head: 64
heads: 8
attn_dropout: 0.1
ff_dropout: 0.1
flash_attn: true
dim_freqs_in: 1025
stft_n_fft: 2048
stft_hop_length: 512
stft_win_length: 2048
stft_normalized: false
mask_estimator_depth: 2
multi_stft_resolution_loss_weight: 1.0
multi_stft_resolutions_window_sizes: !!python/tuple
- 4096
- 2048
- 1024
- 512
- 256
multi_stft_hop_size: 147
multi_stft_normalized: False
training:
batch_size: 1
gradient_accumulation_steps: 1
grad_clip: 0
instruments:
- noreverb
- reverb
lr: 5.0e-05
patience: 2
reduce_factor: 0.95
target_instrument: noreverb
num_epochs: 1000
num_steps: 1000
q: 0.95
coarse_loss_clip: true
ema_momentum: 0.999
optimizer: adam
other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental
use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true
augmentations:
enable: true # enable or disable all augmentations (to fast disable if needed)
loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max)
loudness_min: 0.5
loudness_max: 1.5
mixup: false # mix several stems of same type with some probability (only works for dataset types: 1, 2, 3)
mixup_probs: !!python/tuple # 2 additional stems of the same type (1st with prob 0.2, 2nd with prob 0.02)
- 0.2
- 0.02
mixup_loudness_min: 0.5
mixup_loudness_max: 1.5
inference:
batch_size: 4
dim_t: 1101
num_overlap: 4 |