Shengkun's picture
Add library_name and pipeline_tag to metadata (#1)
f1b44a2 verified
metadata
license: apache-2.0
library_name: transformers
pipeline_tag: text-generation

Paper: https://arxiv.org/pdf/2502.07780
Code: https://github.com/IST-DASLab/DarwinLM
Models: DarwinLM-2.7B, DarwinLM-4.6B, DarwinLM-8.4B
Pruned Models without Post-training: DarwinLM-2.7B-Pruned, DarwinLM-4.6B-Pruned, DarwinLM-8.4B-Pruned


This repository contains the weights of DarwinLM, an evolutionary structured pruning methods for large language models, as introduced in our paper. DarwinLM builds upon an evolutionary search process, generating multiple offspring models in each generation through mutation, and selecting the fittest for survival.

# Please add trust_remote_code=True as the repo includes custom code to load and run DarwinLM
model = AutoModelForCausalLM.from_pretrained("Shengkun/DarwinLM-8.4B-Pruned", trust_remote_code=True)

Downstream Tasks

2.7B

Method Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ Avg
Dense 6.7B 93.7 78.1 69.3 76.4 53.0 78.6 30.7 77.7 69.2
Uniform 3.4B 44.1 57.1 53.3 33.5 32.2 27.3 25.0 49.0 40.1
ZipLM 4.0B 87.4 64.4 58.3 53.2 33.6 50.1 25.5 63.6 54.5
ShearedLLama 2.7B 84.5 66.4 53.4 49.8 28.4 47.6 27.6 50.9 51.0
DarwinLM (one-shot) 2.7B 85.6 70.8 55.8 63.3 38.1 53.2 28.5 62.7 57.2
ShearedLLama (50B) 2.7B 90.8 75.8 64.2 67.0 41.2 70.8 28.2 63.0 62.6
ShearedLLama (10B†) 2.7B 92.0 73.6 63.1 69.8 42.0 64.4 29.0 62.1 61.9
DarwinLM (10B) 2.6B 90.8 72.2 65.1 68.5 45.0 67.2 28.5 64.6 62.8

4.6B

Model Method Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg
Llama-3.1-8B Dense 8B 96.3 81.2 74.3 81.4 58.2 81.7 31.1 84.0 65.2 72.8
Uniform 4.5B 29.1 53.6 51.7 26.0 23.6 27.1 25.5 62.1 25.7 36.1
ZipLM 6B 65.5 60.6 56.0 40.2 34.4 34.4 28.1 63.0 27.9 45.7
DarwinLM (one-shot) 4.6B 84.9 69.4 57.3 59.6 34.2 44.6 24.1 62.2 28.5 51.6
OLMO (2.5T) 7B 92.8 79.4 70.4 73.3 44.9 77.1 27.9 72.5 28.3 62.9
DarwinLM (10.0B) 4.6B 93.2 74.8 67.4 73.2 51.6 71.3 30.7 71.1 40.6 63.7

8.4B

Model Method Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg
Qwen-2.5-14B-Instruct Dense 14B 96.8 81.9 79.1 85.7 72.8 85.1 38.5 87.9 80.0 78.6
Uniform 8.6B 78.2 72.7 57.6 76.1 45.6 47.0 28.1 61.6 45.5 56.9
ZipLM 8.5B 69.0 66.4 52.8 60.1 38.3 43.3 29.6 60.2 25.0 49.4
DarwinLM (one-shot) 8.4B 84.3 73.9 60.5 75.7 48.0 53.3 29.3 66.9 43.1 59.4
OLMO-0424 (2.05T) 7B 96.1 80.1 72.1 73.8 49.2 78.0 29.3 80.8 52.1 67.9
DarwinLM (10.0B) 8.4B 89.5 78.1 70.7 79.6 57.6 74.9 33.5 73.9 57.9 68.4

Bibtex

@article{tang2025darwinlm,
  title={DarwinLM: Evolutionary Structured Pruning of Large Language Models},
  author={Tang, Shengkun and Sieberling, Oliver and Kurtic, Eldar and Shen, Zhiqiang and Alistarh, Dan},
  journal={arXiv preprint arXiv:2502.07780},
  year={2025}
}