shawgpt-ft-optuna / README.md
Shaurya-Shsin's picture
Shaurya-Shsin/shawgpt-ft-optuna-best
894500e verified
metadata
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
library_name: peft
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: shawgpt-ft-optuna
    results: []

shawgpt-ft-optuna

This model is a fine-tuned version of TheBloke/Mistral-7B-Instruct-v0.2-GPTQ on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3283

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0022807991454406587
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 13
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
7.5176 0.5714 1 4.2400
3.2331 1.7143 3 3.1222
2.3374 2.8571 5 2.1483
1.6067 4.0 7 1.4904
2.3372 4.5714 8 1.4033
0.9788 5.7143 10 1.3462
0.9133 6.8571 12 1.3295
0.8018 7.4286 13 1.3283

Framework versions

  • PEFT 0.13.2
  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1