Math-llama / README.md
Shanthan1998's picture
Upload README.md
82a2a73 verified
metadata
license: apache-2.0
language:
  - en
tags:
  - text-generation-inference
  - transformers
  - unsloth
  - llama
  - gguf
library_name: transformers
pipeline_tag: text-generation
datasets:
  - Rimyy/problemMath-Llama3.5K
base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit
model_name: llama-3.2-3b-instruct-bnb-4bit-math-gguf

๐Ÿงฎ LLaMA 3.2 3B Instruct (Unsloth 4-bit) โ€” Finetuned on Rimyy/problemMath-Llama3.5K (GGUF)

This model is a 4-bit GGUF variant of unsloth/llama-3.2-3b-instruct-bnb-4bit, fine-tuned on Rimyy/problemMath-Llama3.5K, a high-quality dataset of math reasoning and problem-solving questions. The model is tailored for math instruction, step-by-step reasoning, and educational applications.

๐Ÿšจ Designed to reason, not just regurgitate. Small model, big brain.


๐Ÿง  Model Details

Feature Value
Base unsloth/llama-3.2-3b-instruct-bnb-4bit
Finetuned Dataset Rimyy/problemMath-Llama3.5K
Quantization 4-bit GGUF (compatible with llama.cpp/text-generation-webui)
Format GGUF
Language English
Instruction Tuned โœ… Yes

๐Ÿ“š Dataset: Rimyy/problemMath-Llama3.5K

  • ~3.5K math word problems and reasoning tasks
  • Emphasizes chain-of-thought (CoT) explanations
  • Covers arithmetic, algebra, and word problems
  • Aligns with OpenAI-style "question โ†’ step-by-step answer" format

๐Ÿ”ง Quick Usage Example (llama.cpp)

./main -m llama-3.2-3b-math.gguf   --prompt "### Question: What is the value of x if x + 3 = 7?
### Answer:"

Expected output:

To solve for x, subtract 3 from both sides of the equation:
x + 3 = 7
x = 7 - 3
x = 4

Answer: 4

๐Ÿงช Usage in Python

from llama_cpp import Llama

llm = Llama(
    model_path="llama-3.2-3b-instruct-math.q4_K.gguf",
    n_ctx=2048,
    n_gpu_layers=32,  # adjust based on your GPU
)

prompt = (
    "### Question: If a rectangle has length 10 and width 5, what is its area?
"
    "### Answer:"
)
response = llm(prompt)
print(response["choices"][0]["text"])

๐Ÿ“ฆ Applications

  • ๐Ÿค– Math tutoring agents
  • ๐Ÿ“š AI-driven educational platforms
  • ๐Ÿงฉ RAG pipelines for mathematical queries
  • ๐Ÿ“ Automated solution generators

โš ๏ธ Limitations

  • Occasional step hallucinations
  • Not optimized for LaTeX-heavy symbolic math
  • May struggle on very long multi-step problems

๐Ÿ“Š Qualitative Benchmark

Task Type Performance
Simple Arithmetic โœ… Excellent
One-Step Algebra โœ… Strong
Multi-Step CoT โš ๏ธ Good (some drift)
Logic Puzzles โš ๏ธ Mixed

๐Ÿ“Œ Quantitative benchmarks forthcoming.


๐Ÿ”— Citation

If you use this model, please cite:

@misc{rimyy2025math,
  author = {Rimyy},
  title = {ProblemMath-Llama3.5K: A Dataset for Math Problem Solving},
  year = {2025},
  url = {https://huggingface.co/datasets/Rimyy/problemMath-Llama3.5K}
}

๐Ÿ™Œ Acknowledgements

  • Meta for LLaMA 3.
  • Unsloth for the 4-bit instruct base.
  • Rimyy for an excellent math dataset.
  • llama.cpp & GGUF community for stellar tooling.

๐Ÿ”ข Small enough to run on your laptop, smart enough to teach algebra.