File size: 2,180 Bytes
a292260 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: NLLB-600m-vie_Latn-to-eng_Latn
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# NLLB-600m-vie_Latn-to-eng_Latn
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1189
- Bleu: 36.6767
- Gen Len: 47.504
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 1.9294 | 2.24 | 1000 | 1.5970 | 23.6201 | 48.1 |
| 1.4 | 4.47 | 2000 | 1.3216 | 28.9526 | 45.156 |
| 1.2071 | 6.71 | 3000 | 1.2245 | 32.5538 | 46.576 |
| 1.0893 | 8.95 | 4000 | 1.1720 | 34.265 | 46.052 |
| 1.0064 | 11.19 | 5000 | 1.1497 | 34.9249 | 46.508 |
| 0.9562 | 13.42 | 6000 | 1.1331 | 36.4619 | 47.244 |
| 0.9183 | 15.66 | 7000 | 1.1247 | 36.4723 | 47.26 |
| 0.8858 | 17.9 | 8000 | 1.1198 | 36.7058 | 47.376 |
| 0.8651 | 20.13 | 9000 | 1.1201 | 36.7897 | 47.496 |
| 0.8546 | 22.37 | 10000 | 1.1189 | 36.6767 | 47.504 |
### Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|