File size: 3,874 Bytes
23f21b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
[paths]
train = null
dev = null
vectors = "vectors/all_text_he_fasttext_model_50"
init_tok2vec = "models/pretrain_ref_he_50/model8.bin"
raw_text = null
input_collection = "merged_output"
output_collection = "gilyon_input"

[system]
gpu_allocator = null
seed = 61
min_len = 20
train_perc = 0.5

[nlp]
lang = "he"
pipeline = ["tok2vec","ner"]
batch_size = 200
disabled = []
before_creation = null
after_creation = null
after_pipeline_creation = null
tokenizer = {"@tokenizers":"inner_punct_tokenizer"}

[components]

[components.ner]
factory = "ner"
incorrect_spans_key = null
moves = null
scorer = {"@scorers":"spacy.ner_scorer.v1"}
update_with_oracle_cut_size = 100

[components.ner.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "ner"
extra_state_tokens = false
hidden_width = 32
maxout_pieces = 3
use_upper = true
nO = null

[components.ner.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}
upstream = "*"

[components.tok2vec]
factory = "tok2vec"

[components.tok2vec.model]
@architectures = "spacy.Tok2Vec.v2"

[components.tok2vec.model.embed]
@architectures = "spacy.MultiHashEmbed.v1"
width = ${components.tok2vec.model.encode.width}
attrs = ["NORM","PREFIX","SUFFIX","ORTH"]
rows = [5000,5000,5000,5000]
include_static_vectors = true

[components.tok2vec.model.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 256
depth = 8
window_size = 1
maxout_pieces = 3

[corpora]

[corpora.dev]
@readers = "mongo_reader"
db_host = "localhost"
db_port = 27017
input_collection = ${paths.input_collection}
output_collection = ${paths.output_collection}
train_perc = ${system.train_perc}
corpus_type = "test"
min_len = ${system.min_len}
random_state = ${system.seed}
unique_by_metadata = true

[corpora.pretrain]
@readers = "spacy.JsonlCorpus.v1"
path = ${paths.raw_text}
min_length = 5
max_length = 512
limit = 0

[corpora.train]
@readers = "mongo_reader"
db_host = "localhost"
db_port = 27017
input_collection = ${paths.input_collection}
output_collection = ${paths.output_collection}
train_perc = ${system.train_perc}
corpus_type = "train"
min_len = ${system.min_len}
random_state = ${system.seed}
unique_by_metadata = true

[training]
dev_corpus = "corpora.dev"
train_corpus = "corpora.train"
seed = ${system.seed}
gpu_allocator = ${system.gpu_allocator}
dropout = 0.5
accumulate_gradient = 1
patience = 1600
max_epochs = 0
max_steps = 20000
eval_frequency = 200
frozen_components = []
before_to_disk = null
annotating_components = []

[training.batcher]
@batchers = "spacy.batch_by_words.v1"
discard_oversize = false
tolerance = 0.2
get_length = null

[training.batcher.size]
@schedules = "compounding.v1"
start = 100
stop = 2000
compound = 1.001
t = 0.0

[training.logger]
@loggers = "spacy.ConsoleLogger.v1"
progress_bar = false

[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = false
eps = 0.00000001
learn_rate = 0.0007

[training.score_weights]
ents_f = 1.0
ents_p = 0.0
ents_r = 0.0
ents_per_type = null

[pretraining]
max_epochs = 9
dropout = 0.5
n_save_every = null
n_save_epoch = null
component = "tok2vec"
layer = ""
corpus = "corpora.pretrain"

[pretraining.batcher]
@batchers = "spacy.batch_by_words.v1"
size = 10000
discard_oversize = false
tolerance = 0.2
get_length = null

[pretraining.objective]
@architectures = "spacy.PretrainCharacters.v1"
maxout_pieces = 3
hidden_size = 50
n_characters = 4

[pretraining.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = true
eps = 0.00000001
learn_rate = 0.001

[initialize]
vectors = ${paths.vectors}
init_tok2vec = ${paths.init_tok2vec}
vocab_data = null
lookups = null
before_init = null
after_init = null

[initialize.components]

[initialize.tokenizer]