SebastianSchramm commited on
Commit
9be4774
1 Parent(s): 852b08d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -0
README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ pipeline_tag: text-generation
5
+ library_name: transformers
6
+ tags:
7
+ - LLM
8
+ - Universal-NER
9
+ - NER
10
+ inference: false
11
+ ---
12
+
13
+ # Quantized version of Universal-NER/UniNER-7B-all
14
+
15
+ [Universal-NER/UniNER-7B-all](https://huggingface.co/Universal-NER/UniNER-7B-all) quantized to 4bit with GPTQ and stored with 1GB shard size.
16
+
17
+ ## Model Description
18
+
19
+ The model [Universal-NER/UniNER-7B-all](https://huggingface.co/Universal-NER/UniNER-7B-all) was quantized to 4bit, group_size 128, and ascending_order=True with auto-gptq integration in transformers (https://huggingface.co/blog/gptq-integration).
20
+
21
+ ## Evaluation
22
+ TODO
23
+
24
+ ## Prompt template
25
+
26
+ Prompt template is the same as for the full precision model:
27
+
28
+ ```python
29
+ prompt_template = """A virtual assistant answers questions from a user based on the provided text.
30
+ USER: Text: {input_text}
31
+ ASSISTANT: I’ve read this text.
32
+ USER: What describes {entity_name} in the text?
33
+ ASSISTANT:
34
+ """
35
+ ```
36
+
37
+ ## Usage
38
+
39
+ It is recommended to format input according to the prompt template mentioned above during inference for best results.
40
+
41
+ ```python
42
+ prompt = prompt_template.format_map({"input_text": "Cologne is a great city in Germany - maybe even the greatest ;)", "entity_name": "city"})
43
+ ```