metadata
license: cc
datasets:
- VMware/open-instruct-v1-oasst-dolly-hhrlhf
language:
- en
pipeline_tag: text-generation
SearchUnify-ML/xgen-7b-8k-open-instruct-gptq
These are GPTQ 4bit model files for VMWare's XGEN 7B 8K Open Instruct.
It is the result of quantizing to 4bit using GPTQ-for-LLaMa.
How to use this GPTQ model from Python code
First, make sure you have AutoGPTQ installed:
pip install auto-gptq
Second, install tiktoken in order to use the tokenizer
pip install tiktoken
from transformers import AutoTokenizer, pipeline
from auto_gptq import AutoGPTQForCausalLM
model_name_or_path = "SearchUnify-ML/xgen-7b-8k-open-instruct-gptq"
model_basename = "gptq_model-4bit-128g"
use_triton = False
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False, trust_remote_code=True)
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
model_basename=model_basename,
use_safetensors=False,
trust_remote_code=True,
device="cuda:0",
use_triton=use_triton)
# Note: check the prompt template is correct for this model.
prompt = "Explain the rules of field hockey to a novice."
prompt_template=f'''### Instruction: {prompt}
### Response:'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.3, max_new_tokens=512)
print(f"\n\n {tokenizer.decode(output[0]).split('### Response:')[1]}")