File size: 1,824 Bytes
7b2b370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627d5f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import pandas as pd

def preprocess_data(data):
    nc = len(data.columns)
    nr = len(data.index)
    new = [0] * nc

    for i in range(nc):
        new[i] = len(data.iloc[:, i].unique()) / nr

    sorted_index = sorted(range(len(new)), key=lambda k: new[k], reverse=True)

    sensitive_cols = list(data.columns[sorted_index[i]] for i in range(nc) if new[sorted_index[i]] > 0.5)
    data = data.drop(columns=sensitive_cols)

    return data



import transformers
import pandas as pd
import streamlit as st
from preprocess import preprocess_data

def anonymize_text(text):
    model_name = "distilbert-base-uncased"
    tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
    model = transformers.AutoModelForMaskedLM.from_pretrained(model_name)

    input_ids = tokenizer.encode(text, return_tensors="pt")
    mask_token_index = torch.where(input_ids == tokenizer.mask_token_id)[1]

    token_logits = model(input_ids)[0]
    mask_token_logits = token_logits[0, mask_token_index, :]

    top_5_tokens = torch.topk(mask_token_logits, 5, dim=1).indices[0].tolist()

    anonymized_text = []
    for token in top_5_tokens:
        token = tokenizer.decode([token])
        anonymized_text.append(token)

    return anonymized_text

def run_app():
    st.title("Text Anonymization App")

    # File upload
    st.subheader("Upload your data")
    file = st.file_uploader("Upload CSV", type=["csv"])

    if file is not None:
        # Read the file
        data = pd.read_csv(file)

        # Preprocess the data
        preprocessed_data = preprocess_data(data)

        # Column selection
        st.subheader("Select columns to anonymize")
        selected_columns = []
        for col in preprocessed_data.columns:
            if st.checkbox(col):
                selected_columns.append(col)

        #