SeanScripts commited on
Commit
2071b31
·
verified ·
1 Parent(s): a61d850

Upload 15 files

Browse files
added_tokens.json ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<im_col>": 152067,
3
+ "<im_end>": 152065,
4
+ "<im_patch>": 152066,
5
+ "<im_start>": 152064,
6
+ "<|endoftext|>": 151643,
7
+ "<|im_end|>": 151645,
8
+ "<|im_start|>": 151644,
9
+ "<|image|>": 152068,
10
+ "|<EXTRA_TOKENS_0>|": 151646,
11
+ "|<EXTRA_TOKENS_100>|": 151746,
12
+ "|<EXTRA_TOKENS_101>|": 151747,
13
+ "|<EXTRA_TOKENS_102>|": 151748,
14
+ "|<EXTRA_TOKENS_103>|": 151749,
15
+ "|<EXTRA_TOKENS_104>|": 151750,
16
+ "|<EXTRA_TOKENS_105>|": 151751,
17
+ "|<EXTRA_TOKENS_106>|": 151752,
18
+ "|<EXTRA_TOKENS_107>|": 151753,
19
+ "|<EXTRA_TOKENS_108>|": 151754,
20
+ "|<EXTRA_TOKENS_109>|": 151755,
21
+ "|<EXTRA_TOKENS_10>|": 151656,
22
+ "|<EXTRA_TOKENS_110>|": 151756,
23
+ "|<EXTRA_TOKENS_111>|": 151757,
24
+ "|<EXTRA_TOKENS_112>|": 151758,
25
+ "|<EXTRA_TOKENS_113>|": 151759,
26
+ "|<EXTRA_TOKENS_114>|": 151760,
27
+ "|<EXTRA_TOKENS_115>|": 151761,
28
+ "|<EXTRA_TOKENS_116>|": 151762,
29
+ "|<EXTRA_TOKENS_117>|": 151763,
30
+ "|<EXTRA_TOKENS_118>|": 151764,
31
+ "|<EXTRA_TOKENS_119>|": 151765,
32
+ "|<EXTRA_TOKENS_11>|": 151657,
33
+ "|<EXTRA_TOKENS_120>|": 151766,
34
+ "|<EXTRA_TOKENS_121>|": 151767,
35
+ "|<EXTRA_TOKENS_122>|": 151768,
36
+ "|<EXTRA_TOKENS_123>|": 151769,
37
+ "|<EXTRA_TOKENS_124>|": 151770,
38
+ "|<EXTRA_TOKENS_125>|": 151771,
39
+ "|<EXTRA_TOKENS_126>|": 151772,
40
+ "|<EXTRA_TOKENS_127>|": 151773,
41
+ "|<EXTRA_TOKENS_128>|": 151774,
42
+ "|<EXTRA_TOKENS_129>|": 151775,
43
+ "|<EXTRA_TOKENS_12>|": 151658,
44
+ "|<EXTRA_TOKENS_130>|": 151776,
45
+ "|<EXTRA_TOKENS_131>|": 151777,
46
+ "|<EXTRA_TOKENS_132>|": 151778,
47
+ "|<EXTRA_TOKENS_133>|": 151779,
48
+ "|<EXTRA_TOKENS_134>|": 151780,
49
+ "|<EXTRA_TOKENS_135>|": 151781,
50
+ "|<EXTRA_TOKENS_136>|": 151782,
51
+ "|<EXTRA_TOKENS_137>|": 151783,
52
+ "|<EXTRA_TOKENS_138>|": 151784,
53
+ "|<EXTRA_TOKENS_139>|": 151785,
54
+ "|<EXTRA_TOKENS_13>|": 151659,
55
+ "|<EXTRA_TOKENS_140>|": 151786,
56
+ "|<EXTRA_TOKENS_141>|": 151787,
57
+ "|<EXTRA_TOKENS_142>|": 151788,
58
+ "|<EXTRA_TOKENS_143>|": 151789,
59
+ "|<EXTRA_TOKENS_144>|": 151790,
60
+ "|<EXTRA_TOKENS_145>|": 151791,
61
+ "|<EXTRA_TOKENS_146>|": 151792,
62
+ "|<EXTRA_TOKENS_147>|": 151793,
63
+ "|<EXTRA_TOKENS_148>|": 151794,
64
+ "|<EXTRA_TOKENS_149>|": 151795,
65
+ "|<EXTRA_TOKENS_14>|": 151660,
66
+ "|<EXTRA_TOKENS_150>|": 151796,
67
+ "|<EXTRA_TOKENS_151>|": 151797,
68
+ "|<EXTRA_TOKENS_152>|": 151798,
69
+ "|<EXTRA_TOKENS_153>|": 151799,
70
+ "|<EXTRA_TOKENS_154>|": 151800,
71
+ "|<EXTRA_TOKENS_155>|": 151801,
72
+ "|<EXTRA_TOKENS_156>|": 151802,
73
+ "|<EXTRA_TOKENS_157>|": 151803,
74
+ "|<EXTRA_TOKENS_158>|": 151804,
75
+ "|<EXTRA_TOKENS_159>|": 151805,
76
+ "|<EXTRA_TOKENS_15>|": 151661,
77
+ "|<EXTRA_TOKENS_160>|": 151806,
78
+ "|<EXTRA_TOKENS_161>|": 151807,
79
+ "|<EXTRA_TOKENS_162>|": 151808,
80
+ "|<EXTRA_TOKENS_163>|": 151809,
81
+ "|<EXTRA_TOKENS_164>|": 151810,
82
+ "|<EXTRA_TOKENS_165>|": 151811,
83
+ "|<EXTRA_TOKENS_166>|": 151812,
84
+ "|<EXTRA_TOKENS_167>|": 151813,
85
+ "|<EXTRA_TOKENS_168>|": 151814,
86
+ "|<EXTRA_TOKENS_169>|": 151815,
87
+ "|<EXTRA_TOKENS_16>|": 151662,
88
+ "|<EXTRA_TOKENS_170>|": 151816,
89
+ "|<EXTRA_TOKENS_171>|": 151817,
90
+ "|<EXTRA_TOKENS_172>|": 151818,
91
+ "|<EXTRA_TOKENS_173>|": 151819,
92
+ "|<EXTRA_TOKENS_174>|": 151820,
93
+ "|<EXTRA_TOKENS_175>|": 151821,
94
+ "|<EXTRA_TOKENS_176>|": 151822,
95
+ "|<EXTRA_TOKENS_177>|": 151823,
96
+ "|<EXTRA_TOKENS_178>|": 151824,
97
+ "|<EXTRA_TOKENS_179>|": 151825,
98
+ "|<EXTRA_TOKENS_17>|": 151663,
99
+ "|<EXTRA_TOKENS_180>|": 151826,
100
+ "|<EXTRA_TOKENS_181>|": 151827,
101
+ "|<EXTRA_TOKENS_182>|": 151828,
102
+ "|<EXTRA_TOKENS_183>|": 151829,
103
+ "|<EXTRA_TOKENS_184>|": 151830,
104
+ "|<EXTRA_TOKENS_185>|": 151831,
105
+ "|<EXTRA_TOKENS_186>|": 151832,
106
+ "|<EXTRA_TOKENS_187>|": 151833,
107
+ "|<EXTRA_TOKENS_188>|": 151834,
108
+ "|<EXTRA_TOKENS_189>|": 151835,
109
+ "|<EXTRA_TOKENS_18>|": 151664,
110
+ "|<EXTRA_TOKENS_190>|": 151836,
111
+ "|<EXTRA_TOKENS_191>|": 151837,
112
+ "|<EXTRA_TOKENS_192>|": 151838,
113
+ "|<EXTRA_TOKENS_193>|": 151839,
114
+ "|<EXTRA_TOKENS_194>|": 151840,
115
+ "|<EXTRA_TOKENS_195>|": 151841,
116
+ "|<EXTRA_TOKENS_196>|": 151842,
117
+ "|<EXTRA_TOKENS_197>|": 151843,
118
+ "|<EXTRA_TOKENS_198>|": 151844,
119
+ "|<EXTRA_TOKENS_199>|": 151845,
120
+ "|<EXTRA_TOKENS_19>|": 151665,
121
+ "|<EXTRA_TOKENS_1>|": 151647,
122
+ "|<EXTRA_TOKENS_200>|": 151846,
123
+ "|<EXTRA_TOKENS_201>|": 151847,
124
+ "|<EXTRA_TOKENS_202>|": 151848,
125
+ "|<EXTRA_TOKENS_203>|": 151849,
126
+ "|<EXTRA_TOKENS_204>|": 151850,
127
+ "|<EXTRA_TOKENS_205>|": 151851,
128
+ "|<EXTRA_TOKENS_206>|": 151852,
129
+ "|<EXTRA_TOKENS_207>|": 151853,
130
+ "|<EXTRA_TOKENS_208>|": 151854,
131
+ "|<EXTRA_TOKENS_209>|": 151855,
132
+ "|<EXTRA_TOKENS_20>|": 151666,
133
+ "|<EXTRA_TOKENS_210>|": 151856,
134
+ "|<EXTRA_TOKENS_211>|": 151857,
135
+ "|<EXTRA_TOKENS_212>|": 151858,
136
+ "|<EXTRA_TOKENS_213>|": 151859,
137
+ "|<EXTRA_TOKENS_214>|": 151860,
138
+ "|<EXTRA_TOKENS_215>|": 151861,
139
+ "|<EXTRA_TOKENS_216>|": 151862,
140
+ "|<EXTRA_TOKENS_217>|": 151863,
141
+ "|<EXTRA_TOKENS_218>|": 151864,
142
+ "|<EXTRA_TOKENS_219>|": 151865,
143
+ "|<EXTRA_TOKENS_21>|": 151667,
144
+ "|<EXTRA_TOKENS_220>|": 151866,
145
+ "|<EXTRA_TOKENS_221>|": 151867,
146
+ "|<EXTRA_TOKENS_222>|": 151868,
147
+ "|<EXTRA_TOKENS_223>|": 151869,
148
+ "|<EXTRA_TOKENS_224>|": 151870,
149
+ "|<EXTRA_TOKENS_225>|": 151871,
150
+ "|<EXTRA_TOKENS_226>|": 151872,
151
+ "|<EXTRA_TOKENS_227>|": 151873,
152
+ "|<EXTRA_TOKENS_228>|": 151874,
153
+ "|<EXTRA_TOKENS_229>|": 151875,
154
+ "|<EXTRA_TOKENS_22>|": 151668,
155
+ "|<EXTRA_TOKENS_230>|": 151876,
156
+ "|<EXTRA_TOKENS_231>|": 151877,
157
+ "|<EXTRA_TOKENS_232>|": 151878,
158
+ "|<EXTRA_TOKENS_233>|": 151879,
159
+ "|<EXTRA_TOKENS_234>|": 151880,
160
+ "|<EXTRA_TOKENS_235>|": 151881,
161
+ "|<EXTRA_TOKENS_236>|": 151882,
162
+ "|<EXTRA_TOKENS_237>|": 151883,
163
+ "|<EXTRA_TOKENS_238>|": 151884,
164
+ "|<EXTRA_TOKENS_239>|": 151885,
165
+ "|<EXTRA_TOKENS_23>|": 151669,
166
+ "|<EXTRA_TOKENS_240>|": 151886,
167
+ "|<EXTRA_TOKENS_241>|": 151887,
168
+ "|<EXTRA_TOKENS_242>|": 151888,
169
+ "|<EXTRA_TOKENS_243>|": 151889,
170
+ "|<EXTRA_TOKENS_244>|": 151890,
171
+ "|<EXTRA_TOKENS_245>|": 151891,
172
+ "|<EXTRA_TOKENS_246>|": 151892,
173
+ "|<EXTRA_TOKENS_247>|": 151893,
174
+ "|<EXTRA_TOKENS_248>|": 151894,
175
+ "|<EXTRA_TOKENS_249>|": 151895,
176
+ "|<EXTRA_TOKENS_24>|": 151670,
177
+ "|<EXTRA_TOKENS_250>|": 151896,
178
+ "|<EXTRA_TOKENS_251>|": 151897,
179
+ "|<EXTRA_TOKENS_252>|": 151898,
180
+ "|<EXTRA_TOKENS_253>|": 151899,
181
+ "|<EXTRA_TOKENS_254>|": 151900,
182
+ "|<EXTRA_TOKENS_255>|": 151901,
183
+ "|<EXTRA_TOKENS_256>|": 151902,
184
+ "|<EXTRA_TOKENS_257>|": 151903,
185
+ "|<EXTRA_TOKENS_258>|": 151904,
186
+ "|<EXTRA_TOKENS_259>|": 151905,
187
+ "|<EXTRA_TOKENS_25>|": 151671,
188
+ "|<EXTRA_TOKENS_260>|": 151906,
189
+ "|<EXTRA_TOKENS_261>|": 151907,
190
+ "|<EXTRA_TOKENS_262>|": 151908,
191
+ "|<EXTRA_TOKENS_263>|": 151909,
192
+ "|<EXTRA_TOKENS_264>|": 151910,
193
+ "|<EXTRA_TOKENS_265>|": 151911,
194
+ "|<EXTRA_TOKENS_266>|": 151912,
195
+ "|<EXTRA_TOKENS_267>|": 151913,
196
+ "|<EXTRA_TOKENS_268>|": 151914,
197
+ "|<EXTRA_TOKENS_269>|": 151915,
198
+ "|<EXTRA_TOKENS_26>|": 151672,
199
+ "|<EXTRA_TOKENS_270>|": 151916,
200
+ "|<EXTRA_TOKENS_271>|": 151917,
201
+ "|<EXTRA_TOKENS_272>|": 151918,
202
+ "|<EXTRA_TOKENS_273>|": 151919,
203
+ "|<EXTRA_TOKENS_274>|": 151920,
204
+ "|<EXTRA_TOKENS_275>|": 151921,
205
+ "|<EXTRA_TOKENS_276>|": 151922,
206
+ "|<EXTRA_TOKENS_277>|": 151923,
207
+ "|<EXTRA_TOKENS_278>|": 151924,
208
+ "|<EXTRA_TOKENS_279>|": 151925,
209
+ "|<EXTRA_TOKENS_27>|": 151673,
210
+ "|<EXTRA_TOKENS_280>|": 151926,
211
+ "|<EXTRA_TOKENS_281>|": 151927,
212
+ "|<EXTRA_TOKENS_282>|": 151928,
213
+ "|<EXTRA_TOKENS_283>|": 151929,
214
+ "|<EXTRA_TOKENS_284>|": 151930,
215
+ "|<EXTRA_TOKENS_285>|": 151931,
216
+ "|<EXTRA_TOKENS_286>|": 151932,
217
+ "|<EXTRA_TOKENS_287>|": 151933,
218
+ "|<EXTRA_TOKENS_288>|": 151934,
219
+ "|<EXTRA_TOKENS_289>|": 151935,
220
+ "|<EXTRA_TOKENS_28>|": 151674,
221
+ "|<EXTRA_TOKENS_290>|": 151936,
222
+ "|<EXTRA_TOKENS_291>|": 151937,
223
+ "|<EXTRA_TOKENS_292>|": 151938,
224
+ "|<EXTRA_TOKENS_293>|": 151939,
225
+ "|<EXTRA_TOKENS_294>|": 151940,
226
+ "|<EXTRA_TOKENS_295>|": 151941,
227
+ "|<EXTRA_TOKENS_296>|": 151942,
228
+ "|<EXTRA_TOKENS_297>|": 151943,
229
+ "|<EXTRA_TOKENS_298>|": 151944,
230
+ "|<EXTRA_TOKENS_299>|": 151945,
231
+ "|<EXTRA_TOKENS_29>|": 151675,
232
+ "|<EXTRA_TOKENS_2>|": 151648,
233
+ "|<EXTRA_TOKENS_300>|": 151946,
234
+ "|<EXTRA_TOKENS_301>|": 151947,
235
+ "|<EXTRA_TOKENS_302>|": 151948,
236
+ "|<EXTRA_TOKENS_303>|": 151949,
237
+ "|<EXTRA_TOKENS_304>|": 151950,
238
+ "|<EXTRA_TOKENS_305>|": 151951,
239
+ "|<EXTRA_TOKENS_306>|": 151952,
240
+ "|<EXTRA_TOKENS_307>|": 151953,
241
+ "|<EXTRA_TOKENS_308>|": 151954,
242
+ "|<EXTRA_TOKENS_309>|": 151955,
243
+ "|<EXTRA_TOKENS_30>|": 151676,
244
+ "|<EXTRA_TOKENS_310>|": 151956,
245
+ "|<EXTRA_TOKENS_311>|": 151957,
246
+ "|<EXTRA_TOKENS_312>|": 151958,
247
+ "|<EXTRA_TOKENS_313>|": 151959,
248
+ "|<EXTRA_TOKENS_314>|": 151960,
249
+ "|<EXTRA_TOKENS_315>|": 151961,
250
+ "|<EXTRA_TOKENS_316>|": 151962,
251
+ "|<EXTRA_TOKENS_317>|": 151963,
252
+ "|<EXTRA_TOKENS_318>|": 151964,
253
+ "|<EXTRA_TOKENS_319>|": 151965,
254
+ "|<EXTRA_TOKENS_31>|": 151677,
255
+ "|<EXTRA_TOKENS_320>|": 151966,
256
+ "|<EXTRA_TOKENS_321>|": 151967,
257
+ "|<EXTRA_TOKENS_322>|": 151968,
258
+ "|<EXTRA_TOKENS_323>|": 151969,
259
+ "|<EXTRA_TOKENS_324>|": 151970,
260
+ "|<EXTRA_TOKENS_325>|": 151971,
261
+ "|<EXTRA_TOKENS_326>|": 151972,
262
+ "|<EXTRA_TOKENS_327>|": 151973,
263
+ "|<EXTRA_TOKENS_328>|": 151974,
264
+ "|<EXTRA_TOKENS_329>|": 151975,
265
+ "|<EXTRA_TOKENS_32>|": 151678,
266
+ "|<EXTRA_TOKENS_330>|": 151976,
267
+ "|<EXTRA_TOKENS_331>|": 151977,
268
+ "|<EXTRA_TOKENS_332>|": 151978,
269
+ "|<EXTRA_TOKENS_333>|": 151979,
270
+ "|<EXTRA_TOKENS_334>|": 151980,
271
+ "|<EXTRA_TOKENS_335>|": 151981,
272
+ "|<EXTRA_TOKENS_336>|": 151982,
273
+ "|<EXTRA_TOKENS_337>|": 151983,
274
+ "|<EXTRA_TOKENS_338>|": 151984,
275
+ "|<EXTRA_TOKENS_339>|": 151985,
276
+ "|<EXTRA_TOKENS_33>|": 151679,
277
+ "|<EXTRA_TOKENS_340>|": 151986,
278
+ "|<EXTRA_TOKENS_341>|": 151987,
279
+ "|<EXTRA_TOKENS_342>|": 151988,
280
+ "|<EXTRA_TOKENS_343>|": 151989,
281
+ "|<EXTRA_TOKENS_344>|": 151990,
282
+ "|<EXTRA_TOKENS_345>|": 151991,
283
+ "|<EXTRA_TOKENS_346>|": 151992,
284
+ "|<EXTRA_TOKENS_347>|": 151993,
285
+ "|<EXTRA_TOKENS_348>|": 151994,
286
+ "|<EXTRA_TOKENS_349>|": 151995,
287
+ "|<EXTRA_TOKENS_34>|": 151680,
288
+ "|<EXTRA_TOKENS_350>|": 151996,
289
+ "|<EXTRA_TOKENS_351>|": 151997,
290
+ "|<EXTRA_TOKENS_352>|": 151998,
291
+ "|<EXTRA_TOKENS_353>|": 151999,
292
+ "|<EXTRA_TOKENS_354>|": 152000,
293
+ "|<EXTRA_TOKENS_355>|": 152001,
294
+ "|<EXTRA_TOKENS_356>|": 152002,
295
+ "|<EXTRA_TOKENS_357>|": 152003,
296
+ "|<EXTRA_TOKENS_358>|": 152004,
297
+ "|<EXTRA_TOKENS_359>|": 152005,
298
+ "|<EXTRA_TOKENS_35>|": 151681,
299
+ "|<EXTRA_TOKENS_360>|": 152006,
300
+ "|<EXTRA_TOKENS_361>|": 152007,
301
+ "|<EXTRA_TOKENS_362>|": 152008,
302
+ "|<EXTRA_TOKENS_363>|": 152009,
303
+ "|<EXTRA_TOKENS_364>|": 152010,
304
+ "|<EXTRA_TOKENS_365>|": 152011,
305
+ "|<EXTRA_TOKENS_366>|": 152012,
306
+ "|<EXTRA_TOKENS_367>|": 152013,
307
+ "|<EXTRA_TOKENS_368>|": 152014,
308
+ "|<EXTRA_TOKENS_369>|": 152015,
309
+ "|<EXTRA_TOKENS_36>|": 151682,
310
+ "|<EXTRA_TOKENS_370>|": 152016,
311
+ "|<EXTRA_TOKENS_371>|": 152017,
312
+ "|<EXTRA_TOKENS_372>|": 152018,
313
+ "|<EXTRA_TOKENS_373>|": 152019,
314
+ "|<EXTRA_TOKENS_374>|": 152020,
315
+ "|<EXTRA_TOKENS_375>|": 152021,
316
+ "|<EXTRA_TOKENS_376>|": 152022,
317
+ "|<EXTRA_TOKENS_377>|": 152023,
318
+ "|<EXTRA_TOKENS_378>|": 152024,
319
+ "|<EXTRA_TOKENS_379>|": 152025,
320
+ "|<EXTRA_TOKENS_37>|": 151683,
321
+ "|<EXTRA_TOKENS_380>|": 152026,
322
+ "|<EXTRA_TOKENS_381>|": 152027,
323
+ "|<EXTRA_TOKENS_382>|": 152028,
324
+ "|<EXTRA_TOKENS_383>|": 152029,
325
+ "|<EXTRA_TOKENS_384>|": 152030,
326
+ "|<EXTRA_TOKENS_385>|": 152031,
327
+ "|<EXTRA_TOKENS_386>|": 152032,
328
+ "|<EXTRA_TOKENS_387>|": 152033,
329
+ "|<EXTRA_TOKENS_388>|": 152034,
330
+ "|<EXTRA_TOKENS_389>|": 152035,
331
+ "|<EXTRA_TOKENS_38>|": 151684,
332
+ "|<EXTRA_TOKENS_390>|": 152036,
333
+ "|<EXTRA_TOKENS_391>|": 152037,
334
+ "|<EXTRA_TOKENS_392>|": 152038,
335
+ "|<EXTRA_TOKENS_393>|": 152039,
336
+ "|<EXTRA_TOKENS_394>|": 152040,
337
+ "|<EXTRA_TOKENS_395>|": 152041,
338
+ "|<EXTRA_TOKENS_396>|": 152042,
339
+ "|<EXTRA_TOKENS_397>|": 152043,
340
+ "|<EXTRA_TOKENS_398>|": 152044,
341
+ "|<EXTRA_TOKENS_399>|": 152045,
342
+ "|<EXTRA_TOKENS_39>|": 151685,
343
+ "|<EXTRA_TOKENS_3>|": 151649,
344
+ "|<EXTRA_TOKENS_400>|": 152046,
345
+ "|<EXTRA_TOKENS_401>|": 152047,
346
+ "|<EXTRA_TOKENS_402>|": 152048,
347
+ "|<EXTRA_TOKENS_403>|": 152049,
348
+ "|<EXTRA_TOKENS_404>|": 152050,
349
+ "|<EXTRA_TOKENS_405>|": 152051,
350
+ "|<EXTRA_TOKENS_406>|": 152052,
351
+ "|<EXTRA_TOKENS_407>|": 152053,
352
+ "|<EXTRA_TOKENS_408>|": 152054,
353
+ "|<EXTRA_TOKENS_409>|": 152055,
354
+ "|<EXTRA_TOKENS_40>|": 151686,
355
+ "|<EXTRA_TOKENS_410>|": 152056,
356
+ "|<EXTRA_TOKENS_411>|": 152057,
357
+ "|<EXTRA_TOKENS_412>|": 152058,
358
+ "|<EXTRA_TOKENS_413>|": 152059,
359
+ "|<EXTRA_TOKENS_414>|": 152060,
360
+ "|<EXTRA_TOKENS_415>|": 152061,
361
+ "|<EXTRA_TOKENS_416>|": 152062,
362
+ "|<EXTRA_TOKENS_417>|": 152063,
363
+ "|<EXTRA_TOKENS_41>|": 151687,
364
+ "|<EXTRA_TOKENS_42>|": 151688,
365
+ "|<EXTRA_TOKENS_43>|": 151689,
366
+ "|<EXTRA_TOKENS_44>|": 151690,
367
+ "|<EXTRA_TOKENS_45>|": 151691,
368
+ "|<EXTRA_TOKENS_46>|": 151692,
369
+ "|<EXTRA_TOKENS_47>|": 151693,
370
+ "|<EXTRA_TOKENS_48>|": 151694,
371
+ "|<EXTRA_TOKENS_49>|": 151695,
372
+ "|<EXTRA_TOKENS_4>|": 151650,
373
+ "|<EXTRA_TOKENS_50>|": 151696,
374
+ "|<EXTRA_TOKENS_51>|": 151697,
375
+ "|<EXTRA_TOKENS_52>|": 151698,
376
+ "|<EXTRA_TOKENS_53>|": 151699,
377
+ "|<EXTRA_TOKENS_54>|": 151700,
378
+ "|<EXTRA_TOKENS_55>|": 151701,
379
+ "|<EXTRA_TOKENS_56>|": 151702,
380
+ "|<EXTRA_TOKENS_57>|": 151703,
381
+ "|<EXTRA_TOKENS_58>|": 151704,
382
+ "|<EXTRA_TOKENS_59>|": 151705,
383
+ "|<EXTRA_TOKENS_5>|": 151651,
384
+ "|<EXTRA_TOKENS_60>|": 151706,
385
+ "|<EXTRA_TOKENS_61>|": 151707,
386
+ "|<EXTRA_TOKENS_62>|": 151708,
387
+ "|<EXTRA_TOKENS_63>|": 151709,
388
+ "|<EXTRA_TOKENS_64>|": 151710,
389
+ "|<EXTRA_TOKENS_65>|": 151711,
390
+ "|<EXTRA_TOKENS_66>|": 151712,
391
+ "|<EXTRA_TOKENS_67>|": 151713,
392
+ "|<EXTRA_TOKENS_68>|": 151714,
393
+ "|<EXTRA_TOKENS_69>|": 151715,
394
+ "|<EXTRA_TOKENS_6>|": 151652,
395
+ "|<EXTRA_TOKENS_70>|": 151716,
396
+ "|<EXTRA_TOKENS_71>|": 151717,
397
+ "|<EXTRA_TOKENS_72>|": 151718,
398
+ "|<EXTRA_TOKENS_73>|": 151719,
399
+ "|<EXTRA_TOKENS_74>|": 151720,
400
+ "|<EXTRA_TOKENS_75>|": 151721,
401
+ "|<EXTRA_TOKENS_76>|": 151722,
402
+ "|<EXTRA_TOKENS_77>|": 151723,
403
+ "|<EXTRA_TOKENS_78>|": 151724,
404
+ "|<EXTRA_TOKENS_79>|": 151725,
405
+ "|<EXTRA_TOKENS_7>|": 151653,
406
+ "|<EXTRA_TOKENS_80>|": 151726,
407
+ "|<EXTRA_TOKENS_81>|": 151727,
408
+ "|<EXTRA_TOKENS_82>|": 151728,
409
+ "|<EXTRA_TOKENS_83>|": 151729,
410
+ "|<EXTRA_TOKENS_84>|": 151730,
411
+ "|<EXTRA_TOKENS_85>|": 151731,
412
+ "|<EXTRA_TOKENS_86>|": 151732,
413
+ "|<EXTRA_TOKENS_87>|": 151733,
414
+ "|<EXTRA_TOKENS_88>|": 151734,
415
+ "|<EXTRA_TOKENS_89>|": 151735,
416
+ "|<EXTRA_TOKENS_8>|": 151654,
417
+ "|<EXTRA_TOKENS_90>|": 151736,
418
+ "|<EXTRA_TOKENS_91>|": 151737,
419
+ "|<EXTRA_TOKENS_92>|": 151738,
420
+ "|<EXTRA_TOKENS_93>|": 151739,
421
+ "|<EXTRA_TOKENS_94>|": 151740,
422
+ "|<EXTRA_TOKENS_95>|": 151741,
423
+ "|<EXTRA_TOKENS_96>|": 151742,
424
+ "|<EXTRA_TOKENS_97>|": 151743,
425
+ "|<EXTRA_TOKENS_98>|": 151744,
426
+ "|<EXTRA_TOKENS_99>|": 151745,
427
+ "|<EXTRA_TOKENS_9>|": 151655
428
+ }
config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models/allenai_Molmo-72B-0924",
3
+ "architectures": [
4
+ "MolmoForCausalLM"
5
+ ],
6
+ "attention_layer_norm": false,
7
+ "auto_map": {
8
+ "AutoConfig": "config_molmo.MolmoConfig",
9
+ "AutoModelForCausalLM": "modeling_molmo.MolmoForCausalLM"
10
+ },
11
+ "clip_qkv": null,
12
+ "embedding_size": 152064,
13
+ "hidden_size": 8192,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 59136,
16
+ "layer_norm_eps": 1e-05,
17
+ "layer_norm_type": "rms",
18
+ "max_position_embeddings": 4096,
19
+ "model_type": "molmo",
20
+ "norm_after": false,
21
+ "num_attention_heads": 64,
22
+ "num_hidden_layers": 80,
23
+ "num_key_value_heads": 8,
24
+ "qkv_bias": true,
25
+ "quantization_config": {
26
+ "_load_in_4bit": true,
27
+ "_load_in_8bit": false,
28
+ "bnb_4bit_compute_dtype": "bfloat16",
29
+ "bnb_4bit_quant_storage": "uint8",
30
+ "bnb_4bit_quant_type": "nf4",
31
+ "bnb_4bit_use_double_quant": false,
32
+ "llm_int8_enable_fp32_cpu_offload": true,
33
+ "llm_int8_has_fp16_weight": false,
34
+ "llm_int8_skip_modules": ["model.wte", "model.ln_f", "model.transformer.ff_out", "model.vision_backbone"],
35
+ "llm_int8_threshold": 6.0,
36
+ "load_in_4bit": true,
37
+ "load_in_8bit": false,
38
+ "quant_method": "bitsandbytes"
39
+ },
40
+ "rope_theta": 1000000.0,
41
+ "tie_word_embeddings": false,
42
+ "torch_dtype": "bfloat16",
43
+ "transformers_version": "4.45.1",
44
+ "use_cache": true,
45
+ "use_position_ids": true,
46
+ "vocab_size": 152064,
47
+ "weight_tying": false
48
+ }
config_molmo.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+
3
+ from transformers import PretrainedConfig, AutoTokenizer
4
+
5
+
6
+ class MolmoConfig(PretrainedConfig):
7
+ model_type = "molmo"
8
+ keys_to_ignore_at_inference = ["past_key_values"]
9
+
10
+ def __init__(
11
+ self,
12
+ vocab_size=50304,
13
+ embedding_size=50304,
14
+ hidden_size=4096,
15
+ intermediate_size=11008,
16
+ num_hidden_layers=32,
17
+ num_attention_heads=32,
18
+ num_key_value_heads=None,
19
+ max_position_embeddings=2048,
20
+ initializer_range=0.02,
21
+ use_cache=True,
22
+ layer_norm_eps: float = 1e-5,
23
+ rope_theta=10000.0,
24
+ clip_qkv=None,
25
+ qkv_bias: bool = False,
26
+ weight_tying: bool = False,
27
+ use_position_ids: bool=True,
28
+ tie_word_embeddings: bool=True,
29
+ attention_layer_norm: bool=False,
30
+ norm_after: bool = False,
31
+ layer_norm_type: str="rms",
32
+ **kwargs,
33
+ ):
34
+ self.vocab_size = vocab_size
35
+ self.embedding_size = embedding_size
36
+ self.max_position_embeddings = max_position_embeddings
37
+ self.hidden_size = hidden_size
38
+ self.intermediate_size = intermediate_size
39
+ self.num_hidden_layers = num_hidden_layers
40
+ self.num_attention_heads = num_attention_heads
41
+ self.layer_norm_eps = layer_norm_eps
42
+ self.weight_tying = weight_tying
43
+ self.use_position_ids = use_position_ids
44
+ self.attention_layer_norm = attention_layer_norm
45
+ self.num_key_value_heads = num_key_value_heads
46
+ self.initializer_range = initializer_range
47
+ self.use_cache = use_cache
48
+ self.rope_theta = rope_theta
49
+ self.clip_qkv = clip_qkv
50
+ self.qkv_bias = qkv_bias
51
+ self.norm_after = norm_after
52
+ self.tie_word_embeddings = tie_word_embeddings
53
+ self.layer_norm_type = layer_norm_type
54
+
55
+ super().__init__(
56
+ tie_word_embeddings=tie_word_embeddings,
57
+ **kwargs,
58
+ )
59
+
60
+ MolmoConfig.register_for_auto_class()
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.45.1"
4
+ }
image_preprocessing_molmo.py ADDED
@@ -0,0 +1,548 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Image processor class for Molmo"""
2
+ from typing import List, Optional, Union, Mapping
3
+
4
+ import numpy as np
5
+ import einops
6
+ import torch
7
+ import torchvision.transforms
8
+ from torchvision.transforms import InterpolationMode
9
+ from torchvision.transforms.functional import convert_image_dtype
10
+
11
+ from transformers.image_utils import (
12
+ OPENAI_CLIP_MEAN,
13
+ OPENAI_CLIP_STD,
14
+ ImageInput,
15
+ is_valid_image,
16
+ )
17
+ from transformers.processing_utils import ImagesKwargs
18
+ from transformers.image_processing_utils import BaseImageProcessor
19
+ from transformers.utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ def pad_to_bounding_box(
26
+ image, offset_height, offset_width, target_height,
27
+ target_width, value=0
28
+ ):
29
+ height, width = image.shape[:2]
30
+ after_padding_width = target_width - offset_width - width
31
+ after_padding_height = target_height - offset_height - height
32
+ return np.pad(image, [
33
+ [offset_height, after_padding_height],
34
+ [offset_width, after_padding_width],
35
+ [0, 0]
36
+ ], constant_values=value)
37
+
38
+
39
+ def normalize_image(image, offset, scale):
40
+ image -= np.array(offset, dtype=np.float32)[None, None, :]
41
+ image /= np.array(scale, dtype=np.float32)[None, None, :]
42
+ return image
43
+
44
+
45
+ def resize_and_pad(
46
+ image,
47
+ desired_output_size,
48
+ resize_method="torch-bilinear",
49
+ pad_value=0,
50
+ normalize=True,
51
+ image_mean=OPENAI_CLIP_MEAN,
52
+ image_std=OPENAI_CLIP_STD,
53
+ ):
54
+ desired_height, desired_width = desired_output_size
55
+ height, width = image.shape[:2]
56
+
57
+ # Cast into float32 since the training code did this in float32 and it (very rarely) effects
58
+ # the results after rounding.
59
+ image_scale_y = np.array(desired_height, np.float32) / np.array(height, np.float32)
60
+ image_scale_x = np.array(desired_width, np.float32) / np.array(width, np.float32)
61
+ image_scale = min(image_scale_x, image_scale_y)
62
+ scaled_height = int(np.array(height, np.float32) * image_scale)
63
+ scaled_width = int(np.array(width, np.float32) * image_scale)
64
+
65
+ if resize_method == "tensorflow":
66
+ # This how the original training code did resizing, it can produce slightly different
67
+ # results then using torch resize so we keep it just in case
68
+ import tensorflow as tf
69
+ image = tf.image.convert_image_dtype(tf.constant(image), dtype=tf.float32)
70
+ image = tf.image.resize(
71
+ image,
72
+ [scaled_height, scaled_width],
73
+ method=tf.image.ResizeMethod.BILINEAR,
74
+ antialias=True,
75
+ )
76
+ image = tf.clip_by_value(image, 0.0, 1.0)
77
+ image = image.numpy()
78
+ elif resize_method == "torch-bilinear":
79
+ image = torch.permute(torch.from_numpy(image), [2, 0, 1])
80
+ image = convert_image_dtype(image) # resize in float32 to match the training code
81
+ image = torchvision.transforms.Resize(
82
+ [scaled_height, scaled_width], InterpolationMode.BILINEAR, antialias=True
83
+ )(image)
84
+ image = torch.clip(image, 0.0, 1.0)
85
+ image = torch.permute(image, [1, 2, 0]).numpy()
86
+ else:
87
+ raise NotImplementedError(resize_method)
88
+
89
+ top_pad = (desired_height - scaled_height) // 2
90
+ left_pad = (desired_width - scaled_width) // 2
91
+ padding = [
92
+ [top_pad, desired_height - scaled_height - top_pad],
93
+ [left_pad, desired_width - scaled_width - left_pad],
94
+ [0, 0]
95
+ ]
96
+ image_mask = np.pad(np.ones_like(image[:, :, 0], dtype=bool), padding[:2])
97
+ image = np.pad(image, padding, constant_values=pad_value)
98
+ if normalize:
99
+ image = normalize_image(image, offset=image_mean, scale=image_std)
100
+ return image, image_mask
101
+
102
+
103
+ def select_tiling(h, w, patch_size, max_num_patches):
104
+ """Decide how best to divide in image of size [w, h] in up to max_num_patches of size patch_size"""
105
+ original_size = np.stack([h, w]) # [1, 2]
106
+ original_res = h * w
107
+ tilings = []
108
+ for i in range(1, max_num_patches+1):
109
+ for j in range(1, max_num_patches+1):
110
+ if i*j <= max_num_patches:
111
+ tilings.append((i, j))
112
+ # sort so argmin and argmax favour smaller tilings in the event of a tie
113
+ tilings.sort(key=lambda x: (x[0]*x[1], x[0]))
114
+ candidate_tilings = np.array(tilings, dtype=np.int32) # [n_resolutions, 2]
115
+ candidate_resolutions = candidate_tilings * patch_size # [n_resolutions, 2]
116
+
117
+ # How much we would need to scale the image to fit exactly in each tiling
118
+ original_size = np.stack([h, w], dtype=np.float32) # [1, 2]
119
+ required_scale_d = candidate_resolutions.astype(np.float32) / original_size
120
+ required_scale = np.min(required_scale_d, axis=-1, keepdims=True) # [n_resolutions, 1]
121
+ if np.all(required_scale < 1):
122
+ # We are forced to downscale, so try to minimize the amount of downscaling
123
+ ix = np.argmax(required_scale)
124
+ else:
125
+ # Pick the resolution that required the least upscaling so that it most closely fits the image
126
+ required_scale = np.where(required_scale < 1.0, 10e9, required_scale)
127
+ ix = np.argmin(required_scale)
128
+ return candidate_tilings[ix]
129
+
130
+
131
+ class MolmoImagesKwargs(ImagesKwargs, total=False):
132
+ max_crops: Optional[int]
133
+ overlap_margins: Optional[List[int]]
134
+ base_image_input_size: Optional[List[int]]
135
+ image_token_length_w: Optional[int]
136
+ image_token_length_h: Optional[int]
137
+ image_patch_size: Optional[int]
138
+ image_padding_mask: Optional[bool]
139
+
140
+
141
+ class MolmoImageProcessor(BaseImageProcessor):
142
+ """Preprocess images and multi-model inputs"""
143
+
144
+ def __init__(
145
+ self,
146
+ max_crops: int = 12,
147
+ overlap_margins: List[int] = (4, 4),
148
+ base_image_input_size: List[int] = (336, 336),
149
+ image_token_length_w: int = 12,
150
+ image_token_length_h: int = 12,
151
+ image_patch_size: int = 14,
152
+ image_padding_mask: bool = True,
153
+ do_normalize: bool = True,
154
+ image_mean: Optional[Union[float, List[float]]] = None,
155
+ image_std: Optional[Union[float, List[float]]] = None,
156
+ **kwargs,
157
+ ):
158
+ super().__init__(**kwargs)
159
+ self.max_crops = max_crops
160
+ self.overlap_margins = overlap_margins
161
+ self.base_image_input_size = base_image_input_size
162
+ self.image_token_length_w = image_token_length_w
163
+ self.image_token_length_h = image_token_length_h
164
+ self.image_patch_size = image_patch_size
165
+ self.image_padding_mask = image_padding_mask
166
+ self.do_normalize = do_normalize
167
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
168
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
169
+
170
+ def image_to_patches_and_tokens(
171
+ self,
172
+ image: ImageInput,
173
+ image_patch_token_id: int,
174
+ image_col_token_id: int,
175
+ image_start_token_id: int,
176
+ image_end_token_id: int,
177
+ max_crops: Optional[int] = None,
178
+ overlap_margins: Optional[List[int]] = None,
179
+ base_image_input_size: Optional[Union[int, List[int]]] = None,
180
+ image_token_length_w: Optional[int] = None,
181
+ image_token_length_h: Optional[int] = None,
182
+ image_patch_size: Optional[int] = None,
183
+ ):
184
+ if isinstance(base_image_input_size, int):
185
+ base_image_input_size = (base_image_input_size, base_image_input_size)
186
+
187
+ base_image_input_d = image_patch_size
188
+ tokens_per_image = image_token_length_w * image_token_length_h
189
+ image_base_patch_w = base_image_input_size[1] // base_image_input_d
190
+ image_base_patch_h = base_image_input_size[0] // base_image_input_d
191
+
192
+ original_image_h, original_image_w = image.shape[:2]
193
+ crop_size = base_image_input_size[0]
194
+
195
+ # Discard this many patches from the (left/top, right/bottom) of crops
196
+ left_margin, right_margin = overlap_margins
197
+ # left_margin, right_margin = 2, 2
198
+ assert left_margin % 2 == 0 # Required for compatibility with 2x2 pooling
199
+ total_margin_pixels = base_image_input_d*(right_margin + left_margin) # pixels removed per dim
200
+ crop_patches = base_image_input_size[0] // base_image_input_d # patches per crop dim
201
+ crop_window_patches = crop_patches - (right_margin + left_margin) # usable patches
202
+ crop_window_size = crop_window_patches * base_image_input_d
203
+ tiling = select_tiling(
204
+ original_image_h - total_margin_pixels,
205
+ original_image_w - total_margin_pixels,
206
+ crop_window_size,
207
+ max_crops
208
+ )
209
+ src, img_mask = resize_and_pad(
210
+ image,
211
+ [tiling[0]*crop_window_size+total_margin_pixels, tiling[1]*crop_window_size+total_margin_pixels]
212
+ )
213
+
214
+ # Now we have to split the image into crops, while keeping track of how each patch in the
215
+ # each crop should be ordered in the global image, this require a lot of tricky booking
216
+ n_crops = tiling[0] * tiling[1]
217
+ patches_arr = []
218
+ mask_arr = []
219
+ patch_ordering_arr = []
220
+
221
+ # We assume 2x2 pooling, but can allow padding the right/bottom with extra
222
+ # patches if the number of patches per side is not even
223
+ assert (crop_patches+1)//2 == image_token_length_h
224
+ assert (crop_patches+1)//2 == image_token_length_w
225
+ on = 0
226
+ on_patch = 0
227
+ for i in range(tiling[0]):
228
+ y0 = i*crop_window_size
229
+ if i == 0:
230
+ crop_y0 = 0
231
+ else:
232
+ crop_y0 = left_margin // 2
233
+
234
+ crop_h = image_base_patch_h - (right_margin + left_margin)
235
+ if i == 0:
236
+ crop_h += left_margin
237
+ if i == (tiling[0]-1):
238
+ crop_h += right_margin
239
+ for j in range(tiling[1]):
240
+ x0 = j*crop_window_size
241
+ if j == 0:
242
+ crop_x0 = 0
243
+ else:
244
+ crop_x0 = left_margin // 2
245
+
246
+ crop_w = image_base_patch_w - (right_margin + left_margin)
247
+ if j == 0:
248
+ crop_w += left_margin
249
+ if j == (tiling[1]-1):
250
+ crop_w += right_margin
251
+
252
+ pooled_w = (crop_w + 1) // 2
253
+ pooled_h = (crop_h + 1) // 2
254
+ patch_ordering_arr.append(
255
+ pad_to_bounding_box(
256
+ np.reshape(np.arange(on, on+pooled_h*pooled_w, dtype=np.int32), (pooled_h, pooled_w, 1)),
257
+ crop_y0, crop_x0, image_token_length_h, image_token_length_w, value=-1
258
+ )[:, :, 0]
259
+ )
260
+ patches_arr.append(src[y0:y0+crop_size, x0:x0+crop_size])
261
+ mask_arr.append(img_mask[y0:y0+crop_size, x0:x0+crop_size])
262
+
263
+ on += pooled_h*pooled_w
264
+ on_patch += 1
265
+ patches = np.stack(patches_arr)
266
+ patch_ordering = np.stack(patch_ordering_arr)
267
+ img_mask = np.stack(mask_arr)
268
+
269
+ # Switch to [n_crops, n_patches, pixels_per_patch] format
270
+ image_layout_impatch_w, image_layout_impatch_h = tiling[0], tiling[1]
271
+ patches = einops.rearrange(
272
+ patches, 'p (h dh) (w dw) c -> p (h w) (dh dw c)',
273
+ dh=base_image_input_d,
274
+ dw=base_image_input_d,
275
+ h=image_base_patch_h,
276
+ w=image_base_patch_w
277
+ )
278
+ img_mask = einops.rearrange(
279
+ img_mask, 'p (h dh) (w dw) -> p (h w) (dh dw)',
280
+ dh=base_image_input_d,
281
+ dw=base_image_input_d,
282
+ h=image_base_patch_h,
283
+ w=image_base_patch_w
284
+ )
285
+
286
+ img_mask = img_mask.astype(np.float32).mean(axis=-1)
287
+ patch_ordering = np.reshape(patch_ordering, [-1])
288
+ valid = patch_ordering >= 0
289
+
290
+ # Transpose order, to get left-to-right order instead of crop-by-crop order
291
+ patch_ordering_rh = np.reshape(
292
+ patch_ordering,
293
+ [tiling[0], tiling[1], image_token_length_h, image_token_length_w]
294
+ )
295
+ patch_ordering_rh = np.transpose(patch_ordering_rh, [0, 2, 1, 3])
296
+ patch_ordering_rh = np.reshape(patch_ordering_rh, [-1])
297
+
298
+ # The transpose will screw up which patches are masked, project the
299
+ # new order into sparse structure of `patch_ordering` to fix this
300
+ patch_ordering[valid] = patch_ordering_rh[patch_ordering_rh >= 0]
301
+
302
+ # Now build the output tokens
303
+ h = tiling[0] * crop_window_patches + (right_margin+left_margin)
304
+ w = tiling[1] * crop_window_patches + (right_margin+left_margin)
305
+ per_row = np.full(
306
+ ((w+1)//2,),
307
+ image_patch_token_id,
308
+ )
309
+ per_row = np.concatenate([per_row, [image_col_token_id]], 0)
310
+
311
+ joint = np.tile(per_row, [(h+1)//2])
312
+ joint = [
313
+ [image_start_token_id],
314
+ joint,
315
+ [image_end_token_id]
316
+ ]
317
+
318
+ # Finally do the same for the global image
319
+ resized, _ = resize_and_pad(image, base_image_input_size)
320
+ resized = einops.rearrange(
321
+ resized, '(h dh) (w dw) c -> (h w) (dh dw c)',
322
+ dh=base_image_input_d,
323
+ dw=base_image_input_d,
324
+ h=image_base_patch_h,
325
+ w=image_base_patch_w
326
+ )
327
+ patches = np.concatenate([np.expand_dims(resized, 0), patches], 0)
328
+
329
+ # Global image goes first, so the order of patches in previous crops gets increased
330
+ patch_ordering = np.where(
331
+ patch_ordering >= 0,
332
+ patch_ordering + tokens_per_image,
333
+ -1
334
+ )
335
+ patch_ordering = np.concatenate([np.arange(0, tokens_per_image), patch_ordering], 0)
336
+ per_row = np.full(
337
+ (image_token_length_w,),
338
+ image_patch_token_id,
339
+ )
340
+ per_row = np.concatenate([per_row, [image_col_token_id]], 0)
341
+ extra_tokens = np.tile(per_row, [image_token_length_h])
342
+ joint = [
343
+ [image_start_token_id],
344
+ extra_tokens,
345
+ [image_end_token_id],
346
+ ] + joint
347
+
348
+ joint = np.concatenate(joint, 0)
349
+ img_mask = np.pad(img_mask, [[0, 1], [0, 0]], constant_values=-1)
350
+ return patches, joint, patch_ordering, img_mask
351
+
352
+ def build_image_input_idx(
353
+ self,
354
+ image_tokens: np.ndarray,
355
+ patch_order: np.ndarray,
356
+ image_patch_token_id: int,
357
+ no_image: Optional[bool] = None,
358
+ image_token_length_w: Optional[int] = None,
359
+ image_token_length_h: Optional[int] = None,
360
+ ):
361
+ """Converts `patch_order` into a mapping of token_id -> patch_id"""
362
+
363
+ tokens_per_image = image_token_length_w * image_token_length_h
364
+ if no_image is not None and no_image:
365
+ return np.zeros((0, tokens_per_image), np.int32)
366
+
367
+ # Indices to insert the patches
368
+ image_input_idx = image_tokens == image_patch_token_id
369
+ image_input_idx = np.nonzero(image_input_idx)[0].astype(np.int32)
370
+
371
+ if patch_order is not None:
372
+ n_tokens = image_input_idx.shape[0]
373
+ patch_order = np.reshape(patch_order, [-1])
374
+ n_patches = patch_order.shape[0]
375
+
376
+ valid = patch_order >= 0
377
+ n_valid_patches = valid.sum()
378
+ assert len(image_input_idx) == n_valid_patches
379
+
380
+ sorted_patch_ixs = np.zeros([n_tokens], np.int32)
381
+ sorted_patch_ixs[patch_order[valid]] = np.arange(n_valid_patches, dtype=np.int32)
382
+
383
+ # Project the inverted mapping into same sparse structure
384
+ sorted_patch_ixs_ex = np.full(np.shape(patch_order), -1)
385
+ sorted_patch_ixs_ex[valid] = sorted_patch_ixs
386
+
387
+ # Do the gather and then re-masked outputs that were masked in `sorted_patch_ixs`
388
+ valid = (sorted_patch_ixs_ex >= 0).astype(np.int32)
389
+ image_input_idx = image_input_idx[sorted_patch_ixs_ex*valid]
390
+ image_input_idx = image_input_idx*valid - 100*(1 - valid)
391
+ image_input_idx = np.reshape(image_input_idx, [-1, tokens_per_image])
392
+ return image_input_idx
393
+
394
+ def preprocess(
395
+ self,
396
+ image: np.ndarray,
397
+ image_patch_token_id: int,
398
+ image_col_token_id: int,
399
+ image_start_token_id: int,
400
+ image_end_token_id: int,
401
+ max_crops: Optional[int] = None,
402
+ overlap_margins: Optional[List[int]] = None,
403
+ base_image_input_size: Optional[Union[int, List[int]]] = None,
404
+ image_token_length_w: Optional[int] = None,
405
+ image_token_length_h: Optional[int] = None,
406
+ image_patch_size: Optional[int] = None,
407
+ **kwargs,
408
+ ):
409
+ """Preprocesses an image
410
+
411
+ Returns:
412
+ crops: (n_crops, n_patches, patch_dim) individual crops, `n_crops` might
413
+ change between images but the other dimension are fixed
414
+ tokens: (n_tokens,) int32 tokens, pad tokens indicate where to insert the
415
+ patch features, might include other special tokens as well
416
+ image_idx: (n_crops, n_patches) index in `tokens` to put the patch features from the
417
+ crops after pooling, negative values indicates patches features to exclude
418
+ padding_mask: (n_crops, n_patches) what percent of each crop is padding, can be None
419
+ if the image mask is not being used.
420
+ """
421
+
422
+ max_crops = max_crops or self.max_crops
423
+ overlap_margins = overlap_margins or self.overlap_margins
424
+ base_image_input_size = base_image_input_size or self.base_image_input_size
425
+ image_token_length_w = image_token_length_w or self.image_token_length_w
426
+ image_token_length_h = image_token_length_h or self.image_token_length_h
427
+ image_patch_size = image_patch_size or self.image_patch_size
428
+
429
+ crops, image_tokens, patch_ordering, img_mask = self.image_to_patches_and_tokens(
430
+ image,
431
+ image_patch_token_id,
432
+ image_col_token_id,
433
+ image_start_token_id,
434
+ image_end_token_id,
435
+ max_crops,
436
+ overlap_margins,
437
+ base_image_input_size,
438
+ image_token_length_w,
439
+ image_token_length_h,
440
+ image_patch_size,
441
+ )
442
+ patch_idx = self.build_image_input_idx(
443
+ image_tokens,
444
+ patch_ordering,
445
+ image_patch_token_id,
446
+ image_token_length_w=image_token_length_w,
447
+ image_token_length_h=image_token_length_h,
448
+ )
449
+ return crops, image_tokens, patch_idx, img_mask
450
+
451
+ def multimodal_preprocess(
452
+ self,
453
+ images: np.ndarray,
454
+ tokens: List[int],
455
+ image_idx: np.ndarray,
456
+ sequence_length: int,
457
+ image_patch_token_id: int,
458
+ image_col_token_id: int,
459
+ image_start_token_id: int,
460
+ image_end_token_id: int,
461
+ **kwargs,
462
+ ):
463
+ """Merge images and text tokens into multi-modal features for the model
464
+
465
+ :param images: images to use as input
466
+ :param tokens: input text tokens
467
+ :param image_idx: where to insert the images into `tokens`
468
+ :params image_patch_token_id: id to use of tokens that will contain image features
469
+ :params image_col_token_id: token id for image column special tokens
470
+ :params image_start_token_id: token id for image start special tokens
471
+ :params image_end_token_id: token id for image end special tokens
472
+ :params kwargs: override preprocessor default args
473
+ """
474
+ max_total_crops = kwargs.get("max_crops") or self.max_crops
475
+ image_token_length_w = kwargs.get("image_token_length_w") or self.image_token_length_w
476
+ image_token_length_h = kwargs.get("image_token_length_h") or self.image_token_length_h
477
+ image_patch_size = kwargs.get("image_patch_size") or self.image_patch_size
478
+ base_image_input_size = kwargs.get("base_image_input_size") or self.base_image_input_size
479
+ image_num_patch = (
480
+ base_image_input_size[0] // image_patch_size,
481
+ base_image_input_size[1] // image_patch_size,
482
+ )
483
+ image_padding_mask = kwargs.get("image_padding_mask") or self.image_padding_mask
484
+
485
+ tokens_per_image = image_token_length_w * image_token_length_h
486
+ n_pixels = image_patch_size * image_patch_size * 3
487
+ n_patches = image_num_patch[0] * image_num_patch[1]
488
+
489
+ if images is None:
490
+ return {
491
+ "input_ids": tokens,
492
+ "images": None,
493
+ "image_input_idx": None
494
+ }
495
+ else:
496
+ n = len(images)
497
+ all_crops = []
498
+ all_image_idx = []
499
+ out_tokens = []
500
+ all_crop_masks = []
501
+
502
+ for ix in range(n):
503
+ token_ix = image_idx[ix]
504
+ crops, image_tokens, patch_idx, img_mask = self.preprocess(
505
+ images[ix],
506
+ image_patch_token_id,
507
+ image_col_token_id,
508
+ image_start_token_id,
509
+ image_end_token_id,
510
+ **kwargs,
511
+ )
512
+
513
+ if token_ix == -1: # -1 is an image inserted at the very start
514
+ start = 0
515
+ token_ix = 0
516
+ end = 0
517
+ else:
518
+ start = 0 if ix == 0 else image_idx[ix-1] + 1
519
+ end = token_ix + 1
520
+
521
+ all_image_idx.append(patch_idx + token_ix)
522
+ all_crops.append(crops)
523
+ out_tokens.append(tokens[start:token_ix])
524
+ out_tokens.append(image_tokens)
525
+ if ix == (n - 1):
526
+ out_tokens.append(tokens[end:])
527
+ if image_padding_mask:
528
+ all_crop_masks.append(img_mask)
529
+
530
+ input_ids = np.concatenate(out_tokens, 0)
531
+ images = np.concatenate(all_crops, 0)
532
+ image_input_idx = np.concatenate(all_image_idx, 0)
533
+ if image_padding_mask:
534
+ image_masks = np.concatenate(all_crop_masks, 0)
535
+ else:
536
+ image_masks = None
537
+
538
+ out = {
539
+ "input_ids": input_ids,
540
+ "images": images,
541
+ "image_input_idx": image_input_idx
542
+ }
543
+ if image_masks is not None:
544
+ out["image_masks"] = image_masks
545
+ return out
546
+
547
+
548
+ MolmoImageProcessor.register_for_auto_class()
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_molmo.py ADDED
@@ -0,0 +1,2368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import math
3
+ from copy import deepcopy
4
+ from dataclasses import fields, dataclass, replace
5
+ from enum import Enum
6
+ from typing import List, Optional, Tuple, Union, Dict, Any, Sequence, Callable, cast, MutableMapping
7
+
8
+ import torch
9
+ from einops import einsum, einops
10
+ from transformers import PreTrainedModel, GenerationConfig
11
+ from transformers.cache_utils import Cache
12
+ from transformers.modeling_outputs import CausalLMOutputWithPast, ModelOutput
13
+ from transformers.models.auto import AutoModelForCausalLM
14
+ from torch import nn
15
+
16
+ from .config_molmo import MolmoConfig
17
+ from torch.nn import functional as F
18
+
19
+
20
+ log = logging.getLogger(__name__)
21
+
22
+
23
+ class BufferCache(dict, MutableMapping[str, torch.Tensor]):
24
+ """
25
+ Cache for attention biases and other things that would normally be stored as buffers.
26
+ We avoid using buffers because we've run into various issues doing so with FSDP.
27
+ In general it appears the way FSDP handles buffers is not well-defined.
28
+ It doesn't shard them but apparently it does synchronize them across processes, which we want to avoid
29
+ since (A) it isn't necessary, and (B) we sometimes have `-inf` in these biases which might get turned into
30
+ NaNs when they're synchronized due to casting or some other issue.
31
+ """
32
+
33
+
34
+ class StrEnum(str, Enum):
35
+ def __str__(self) -> str:
36
+ return self.value
37
+
38
+ def __repr__(self) -> str:
39
+ return f"'{str(self)}'"
40
+
41
+
42
+ class ImageProjectType(StrEnum):
43
+ mlp = "mlp"
44
+ mlpx2 = "2mlp"
45
+ linear = "linear"
46
+
47
+
48
+ class ImagePooling2DType(StrEnum):
49
+ attention = "attention"
50
+ attention_meanq = "attention-meanq"
51
+ attention_2wide = "attention_2wide"
52
+ attention_v2 = "attention-v2"
53
+ none = "none"
54
+ stack = "stack"
55
+
56
+
57
+ class ActivationType(StrEnum):
58
+ quick_gelu = "quick_gelu"
59
+ gelu = "gelu"
60
+ gelu_tanh = "gelu_tanh"
61
+ relu = "relu"
62
+ silu = "silu"
63
+ llama_geglu = "llama_geglu"
64
+ llama_geglu_tanh = "llama_geglu_tanh"
65
+ llama_swiglu = "llama_swiglu"
66
+ swiglu = "swiglu"
67
+
68
+
69
+ def ensure_finite_(x: torch.Tensor, check_neg_inf: bool = True, check_pos_inf: bool = False):
70
+ """
71
+ Modify ``x`` in place to replace ``float("-inf")`` with the minimum value of the dtype when ``check_neg_inf``
72
+ is ``True`` and to replace ``float("inf")`` with the maximum value of the dtype when ``check_pos_inf`` is ``True``.
73
+ """
74
+ if check_neg_inf:
75
+ x.masked_fill_(x == float("-inf"), torch.finfo(x.dtype).min)
76
+ if check_pos_inf:
77
+ x.masked_fill_(x == float("inf"), torch.finfo(x.dtype).max)
78
+
79
+
80
+ class MolmoConfigurationError(Exception):
81
+ pass
82
+
83
+
84
+ def _non_meta_init_device(config) -> torch.device:
85
+ if config.init_device is not None and config.init_device != "meta":
86
+ return torch.device(config.init_device)
87
+ else:
88
+ return torch.device("cuda" if torch.cuda.is_available() else "cpu")
89
+
90
+
91
+ class RotaryEmbedding(nn.Module):
92
+ """
93
+ [Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864).
94
+ """
95
+
96
+ def __init__(self, config: MolmoConfig, cache: BufferCache):
97
+ super().__init__()
98
+ self.config = config
99
+ self.__cache = cache
100
+ # Warm up cache.
101
+ self.get_rotary_embedding(
102
+ config.max_position_embeddings or config.max_sequence_length,
103
+ _non_meta_init_device(config)
104
+ )
105
+
106
+ def get_rotary_embedding(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]:
107
+ if (
108
+ (pos_sin := self.__cache.get("rope_pos_sin")) is not None
109
+ and (pos_cos := self.__cache.get("rope_pos_cos")) is not None
110
+ and pos_sin.shape[-2] >= seq_len
111
+ and pos_cos.shape[-2] >= seq_len
112
+ ):
113
+ if pos_sin.device != device:
114
+ pos_sin = pos_sin.to(device)
115
+ self.__cache["rope_pos_sin"] = pos_sin
116
+ if pos_cos.device != device:
117
+ pos_cos = pos_cos.to(device)
118
+ self.__cache["rope_pos_cos"] = pos_cos
119
+ return pos_sin[:, :, :seq_len, :], pos_cos[:, :, :seq_len, :]
120
+
121
+ with torch.autocast(device.type, enabled=False):
122
+ dim = self.config.d_model // self.config.n_heads
123
+ inv_freq = 1.0 / (self.config.rope_theta ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim))
124
+ seq = torch.arange(seq_len, device=device, dtype=torch.float)
125
+ freqs = torch.einsum("i , j -> i j", seq, inv_freq)
126
+ if self.config.rope_impl == "interleave":
127
+ positions = freqs.repeat_interleave(2, dim=-1)
128
+ else:
129
+ positions = torch.cat((freqs, freqs), dim=-1)
130
+ pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :]
131
+ self.__cache["rope_pos_sin"] = pos_sin
132
+ self.__cache["rope_pos_cos"] = pos_cos
133
+ return pos_sin, pos_cos
134
+
135
+ def rotate_half(self, x: torch.Tensor) -> torch.Tensor:
136
+ B, nh, T, hs = x.size()
137
+ x = x.view(B, nh, T, 2, hs // 2)
138
+ x1, x2 = x.unbind(dim=-2)
139
+ return torch.cat((-x2, x1), dim=-1)
140
+
141
+ def rotate_every_two(self, x: torch.Tensor) -> torch.Tensor:
142
+ B, nh, T, hs = x.size()
143
+ x = x.view(B, nh, T, hs // 2, 2)
144
+ x1, x2 = x.unbind(dim=-1)
145
+ x = torch.stack((-x2, x1), dim=-1)
146
+ return x.view(B, nh, T, hs)
147
+
148
+ def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
149
+ if self.config.rope_impl == "interleave":
150
+ return ((t * pos_cos) + (self.rotate_every_two(t) * pos_sin)).to(t.dtype)
151
+ else:
152
+ return ((t * pos_cos) + (self.rotate_half(t) * pos_sin)).to(t.dtype)
153
+
154
+ def forward(
155
+ self,
156
+ q: torch.Tensor,
157
+ k: torch.Tensor,
158
+ position_ids: Optional[torch.Tensor] = None
159
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
160
+ if self.config.rope_full_precision:
161
+ q_, k_ = q.float(), k.float()
162
+ else:
163
+ q_, k_ = q, k
164
+
165
+ with torch.autocast(q.device.type, enabled=False):
166
+ batch_size = q_.shape[0]
167
+ query_len, key_len = q_.shape[-2], k_.shape[-2] # could be different if layer_past not None
168
+ if position_ids is not None:
169
+ freqs_cis_len = (self.config.max_position_embeddings or self.config.max_sequence_length)
170
+ else:
171
+ freqs_cis_len = key_len
172
+ pos_sin, pos_cos = self.get_rotary_embedding(freqs_cis_len, q_.device)
173
+ pos_sin = pos_sin.type_as(q_)
174
+ pos_cos = pos_cos.type_as(q_)
175
+ if position_ids is not None:
176
+ assert query_len == key_len, "Query and key lengths must be equal when using position IDs."
177
+ pos_sin = pos_sin[0, 0][position_ids].view(
178
+ (batch_size, 1, key_len, pos_sin.shape[-1])
179
+ )
180
+ pos_cos = pos_cos[0, 0][position_ids].view(
181
+ (batch_size, 1, key_len, pos_cos.shape[-1])
182
+ )
183
+ q_ = self.apply_rotary_pos_emb(
184
+ pos_sin[:, :, key_len - query_len : key_len, :],
185
+ pos_cos[:, :, key_len - query_len : key_len, :],
186
+ q_,
187
+ )
188
+ k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_)
189
+ return q_.type_as(q), k_.type_as(k)
190
+
191
+
192
+ class MolmoBlock(nn.Module):
193
+ """
194
+ A base class for transformer block implementations.
195
+ """
196
+
197
+ def __init__(self, layer_id: int, config: MolmoConfig, cache: BufferCache):
198
+ super().__init__()
199
+ self.layer_id = layer_id
200
+ self.config = config
201
+ self.hidden_size = (
202
+ config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
203
+ )
204
+ self.__cache = cache
205
+ self._activation_checkpoint_fn = None
206
+
207
+ # Dropout.
208
+ self.dropout = Dropout(config.residual_dropout)
209
+
210
+ # Layer norms.
211
+ self.k_norm: Optional[LayerNormBase] = None
212
+ self.q_norm: Optional[LayerNormBase] = None
213
+ if config.attention_layer_norm:
214
+ assert config.effective_n_kv_heads is not None
215
+ self.k_norm = LayerNormBase.build(
216
+ config,
217
+ size=(config.d_model // config.n_heads) * config.effective_n_kv_heads,
218
+ elementwise_affine=config.attention_layer_norm_with_affine,
219
+ )
220
+ self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine)
221
+
222
+ # Make sure QKV clip coefficient is positive, otherwise it's not well-defined.
223
+ if config.clip_qkv is not None:
224
+ assert config.clip_qkv > 0
225
+
226
+ # Activation function.
227
+ self.act = Activation.build(config)
228
+ assert (self.act.output_multiplier * self.hidden_size) % 1 == 0
229
+
230
+ # Attention output projection.
231
+ input_dim = config.d_model
232
+ self.attn_out = nn.Linear(
233
+ input_dim, config.d_model,
234
+ bias=config.include_bias,
235
+ device=config.init_device
236
+ )
237
+
238
+ # Feed-forward output projection.
239
+ self.ff_out = nn.Linear(
240
+ int(self.act.output_multiplier * self.hidden_size),
241
+ config.d_model,
242
+ bias=config.include_bias,
243
+ device=config.init_device,
244
+ )
245
+ self.ff_out._is_residual = True # type: ignore
246
+
247
+ # Rotary embeddings.
248
+ if self.config.rope:
249
+ self.rotary_emb = RotaryEmbedding(config, self.__cache)
250
+
251
+ self.flash_attn_func = None
252
+ if config.attention_type == "flash":
253
+ try:
254
+ from flash_attn import flash_attn_func # type: ignore
255
+
256
+ self.flash_attn_func = flash_attn_func
257
+ except ModuleNotFoundError:
258
+ pass
259
+
260
+ def reset_parameters(self):
261
+ if self.k_norm is not None:
262
+ self.k_norm.reset_parameters()
263
+ if self.q_norm is not None:
264
+ self.q_norm.reset_parameters()
265
+ init_weights(
266
+ self.config,
267
+ self.attn_out,
268
+ d=self.config.d_model,
269
+ layer_id=self.layer_id,
270
+ type_of_module=ModuleType.out_module,
271
+ )
272
+ init_weights(
273
+ self.config,
274
+ self.ff_out,
275
+ d=self.ff_out.in_features,
276
+ layer_id=self.layer_id,
277
+ type_of_module=ModuleType.out_module,
278
+ )
279
+
280
+ @classmethod
281
+ def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor:
282
+ target_dtype = input_dtype
283
+ # NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
284
+ # `is_autocast_cpu_enabled()` for CPU autocast.
285
+ # See https://github.com/pytorch/pytorch/issues/110966.
286
+ if bias.device.type == "cuda" and torch.is_autocast_enabled():
287
+ target_dtype = torch.get_autocast_gpu_dtype()
288
+ elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled():
289
+ target_dtype = torch.get_autocast_cpu_dtype()
290
+ if bias.dtype != target_dtype:
291
+ bias = bias.to(target_dtype)
292
+ ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False)
293
+ return bias
294
+
295
+ def _scaled_dot_product_attention(
296
+ self,
297
+ q: torch.Tensor,
298
+ k: torch.Tensor,
299
+ v: torch.Tensor,
300
+ attn_mask: Optional[torch.Tensor] = None,
301
+ dropout_p: float = 0.0,
302
+ response_dropout_p: float = 0.0,
303
+ is_causal: bool = False,
304
+ ) -> torch.Tensor:
305
+ """
306
+ Computes scaled dot product attention on query, key and value tensors, using an optional
307
+ attention mask if passed, and applying dropout if a probability greater than 0.0 is specified.
308
+ """
309
+ if attn_mask is not None:
310
+ attn_mask = attn_mask.to(q.device)
311
+
312
+ if self.flash_attn_func is not None and attn_mask is None:
313
+ r = self.flash_attn_func(
314
+ q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), dropout_p=dropout_p, causal=is_causal
315
+ )
316
+ return r.transpose(1, 2)
317
+ else:
318
+ # torch's sdpa doesn't support GQA, so we're doing this
319
+ assert k.size(1) == v.size(1)
320
+ num_kv_heads = k.size(1)
321
+ num_q_heads = q.size(1)
322
+ if num_q_heads != num_kv_heads:
323
+ assert num_q_heads % num_kv_heads == 0
324
+ k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
325
+ v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
326
+
327
+ return F.scaled_dot_product_attention(
328
+ q,
329
+ k,
330
+ v,
331
+ attn_mask=attn_mask,
332
+ dropout_p=dropout_p,
333
+ is_causal=is_causal,
334
+ )
335
+
336
+ def attention(
337
+ self,
338
+ q: torch.Tensor,
339
+ k: torch.Tensor,
340
+ v: torch.Tensor,
341
+ attention_bias: Optional[torch.Tensor] = None,
342
+ position_ids: Optional[torch.Tensor] = None,
343
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
344
+ use_cache: bool = False,
345
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
346
+ B, T, C = q.size() # batch size, sequence length, d_model
347
+ dtype = k.dtype
348
+
349
+ # Optionally apply layer norm to keys and queries.
350
+ if self.q_norm is not None and self.k_norm is not None:
351
+ q = self.q_norm(q).to(dtype=dtype)
352
+ k = self.k_norm(k).to(dtype=dtype)
353
+
354
+ # Move head forward to be next to the batch dim.
355
+ # shape: (B, nh, T, hs)
356
+ q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
357
+ # shape: (B, n_kv_h, T, hs)
358
+ k = k.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
359
+ # shape: (B, n_kv_h, T, hs)
360
+ v = v.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
361
+
362
+ if self.config.use_position_ids and self.config.rope:
363
+ # Apply rotary embeddings
364
+ q, k = self.rotary_emb(q, k, position_ids=position_ids)
365
+
366
+ if layer_past is not None:
367
+ past_key, past_value = layer_past
368
+ k = torch.cat((past_key.to(k.device), k), dim=-2)
369
+ v = torch.cat((past_value.to(v.device), v), dim=-2)
370
+
371
+ present = (k, v) if use_cache else None
372
+ query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None
373
+
374
+ if not self.config.use_position_ids and self.config.rope:
375
+ # Apply rotary embeddings
376
+ q, k = self.rotary_emb(q, k)
377
+
378
+ if attention_bias is not None:
379
+ # Resize and cast attention bias.
380
+ # The current dtype of the attention bias might not match the dtype that the SDP attn function will
381
+ # run in if AMP is enabled, and this can be a problem if some tokens are masked out due to padding
382
+ # as down-casting the attention bias to the autocast precision will result in -infs, which will
383
+ # cause the SDP attn function to produce NaNs.
384
+ attention_bias = self._cast_attn_bias(
385
+ attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype
386
+ )
387
+
388
+ # Get the attention scores.
389
+ # shape: (B, nh, T, hs)
390
+ att = self._scaled_dot_product_attention(
391
+ q,
392
+ k,
393
+ v,
394
+ attn_mask=attention_bias,
395
+ dropout_p=0.0 if not self.training else self.config.attention_dropout,
396
+ response_dropout_p=0.0 if not self.training else self.config.response_attention_dropout,
397
+ is_causal=attention_bias is None,
398
+ )
399
+
400
+ # Re-assemble all head outputs side-by-side.
401
+ att = att.transpose(1, 2).contiguous().view(B, T, C)
402
+
403
+ # Apply output projection.
404
+ return self.attn_out(att), present
405
+
406
+ def forward(
407
+ self,
408
+ x: torch.Tensor,
409
+ attention_bias: Optional[torch.FloatTensor] = None,
410
+ position_ids: Optional[torch.Tensor] = None,
411
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
412
+ use_cache: bool = False,
413
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
414
+ raise NotImplementedError
415
+
416
+ @classmethod
417
+ def build(cls, layer_id: int, config: MolmoConfig, cache: BufferCache):
418
+ return MolmoSequentialBlock(layer_id, config, cache)
419
+
420
+
421
+ class MolmoSequentialBlock(MolmoBlock):
422
+ """
423
+ This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
424
+ (plus another skip connection).
425
+ """
426
+
427
+ def __init__(self, layer_id: int, config: MolmoConfig, cache: BufferCache):
428
+ super().__init__(layer_id, config, cache)
429
+ # Layer norms.
430
+ self.attn_norm = LayerNorm.build(config)
431
+ self.ff_norm = LayerNorm.build(config)
432
+ # Attention input projection. Projects x -> (q, k, v)
433
+
434
+ head_dim = config.d_model // config.n_heads
435
+ self.fused_dims = (
436
+ config.d_model,
437
+ config.effective_n_kv_heads * head_dim,
438
+ config.effective_n_kv_heads * head_dim,
439
+ )
440
+ self.att_proj = nn.Linear(
441
+ config.d_model, sum(self.fused_dims),
442
+ bias=config.include_bias or config.qkv_bias,
443
+ device=config.init_device
444
+ )
445
+ # Feed-forward input projection.
446
+ self.ff_proj = nn.Linear(
447
+ config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
448
+ )
449
+
450
+ def reset_parameters(self):
451
+ super().reset_parameters()
452
+ self.attn_norm.reset_parameters()
453
+ self.ff_norm.reset_parameters()
454
+ # NOTE: the standard deviation for these weights does not depend on the layer.
455
+ init_weights(
456
+ self.config, self.att_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
457
+ )
458
+ init_weights(
459
+ self.config, self.ff_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
460
+ )
461
+
462
+ def forward(
463
+ self,
464
+ x: torch.Tensor,
465
+ attention_bias: Optional[torch.Tensor] = None,
466
+ position_ids: Optional[torch.Tensor] = None,
467
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
468
+ use_cache: bool = False,
469
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
470
+ # Get query, key, value projections.
471
+ # shape:
472
+ # - for regular attn q, k, v: (batch_size, seq_len, d_model)
473
+ # - for multi-query attn q: (batch_size, seq_len, d_model)
474
+ # k, v: (batch_size, seq_len, d_model // n_heads)
475
+ # - for group query attn q: (batch_size, seq_len, d_model)
476
+ # k, v: (batch_size, seq_len, d_model // n_kv_heads)
477
+
478
+ if not self.config.norm_after:
479
+ if self._activation_checkpoint_fn is not None:
480
+ atten_in = self._activation_checkpoint_fn(self.attn_norm, x)
481
+ else:
482
+ atten_in = self.attn_norm(x)
483
+ else:
484
+ atten_in = x
485
+ qkv = self.att_proj(atten_in)
486
+
487
+ if self.config.clip_qkv is not None:
488
+ qkv.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
489
+
490
+ q, k, v = qkv.split(self.fused_dims, dim=-1)
491
+
492
+ # Get attention scores.
493
+ if self._activation_checkpoint_fn is not None:
494
+ att, cache = self._activation_checkpoint_fn( # type: ignore
495
+ self.attention, q, k, v, attention_bias, position_ids=position_ids, layer_past=layer_past, use_cache=use_cache
496
+ )
497
+ else:
498
+ att, cache = self.attention(q, k, v, attention_bias, position_ids=position_ids, layer_past=layer_past, use_cache=use_cache)
499
+
500
+ if self.config.norm_after:
501
+ if self._activation_checkpoint_fn is not None:
502
+ att = self._activation_checkpoint_fn(self.attn_norm, att)
503
+ else:
504
+ att = self.attn_norm(att)
505
+
506
+ # Add attention scores.
507
+ # shape: (B, T, C)
508
+ x = x + self.dropout(att)
509
+
510
+ # Add feed-forward projection.
511
+ # shape: (batch_size, seq_len, d_model)
512
+ og_x = x
513
+
514
+ if not self.config.norm_after:
515
+ if self._activation_checkpoint_fn is not None:
516
+ x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
517
+ else:
518
+ x = self.ff_norm(x)
519
+
520
+ x = self.ff_proj(x)
521
+ if self._activation_checkpoint_fn is not None:
522
+ x = self._activation_checkpoint_fn(self.act, x) # type: ignore
523
+ else:
524
+ x = self.act(x)
525
+ x = self.ff_out(x)
526
+
527
+ if self.config.norm_after:
528
+ if self._activation_checkpoint_fn is not None:
529
+ x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
530
+ else:
531
+ x = self.ff_norm(x)
532
+
533
+ x = self.dropout(x)
534
+ x = og_x + x
535
+
536
+ return x, cache
537
+
538
+
539
+ class Embedding(nn.Module):
540
+ def __init__(
541
+ self,
542
+ num_embeddings: int,
543
+ num_new_embeddings: int,
544
+ features: int,
545
+ device: Union[str, torch.device],
546
+ initializer_range: float = 0.02,
547
+ new_embed_initializer_range: float = 0.02,
548
+ ):
549
+ super().__init__()
550
+ self.initializer_range = initializer_range
551
+ self.new_embed_initializer_range = new_embed_initializer_range
552
+ self.embedding = nn.Parameter(
553
+ torch.zeros(num_embeddings, features, device=device),
554
+ )
555
+ self.new_embedding = nn.Parameter(
556
+ torch.zeros(num_new_embeddings, features, device=device),
557
+ )
558
+
559
+ def reset_parameters(self):
560
+ nn.init.normal_(self.embedding, std=self.initializer_range)
561
+ nn.init.normal_(self.new_embedding, std=self.new_embed_initializer_range)
562
+
563
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
564
+ return F.embedding(x, torch.cat([self.embedding, self.new_embedding], dim=0))
565
+
566
+
567
+ class Dropout(nn.Dropout):
568
+ def __init__(
569
+ self,
570
+ p: float = 0.5,
571
+ inplace: bool = False,
572
+ mask_p: float = 0,
573
+ broadcast_dims: Sequence[int] = (),
574
+ ):
575
+ super().__init__(p, inplace)
576
+ self.mask_p = mask_p
577
+ self.broadcast_dims = broadcast_dims
578
+
579
+ def forward(self, input: torch.Tensor) -> torch.Tensor:
580
+ """
581
+ :param input: A tensor of shape `(batch_size, seq_len, embed_dim)`
582
+ """
583
+ if self.p == 0.0 and (self.mask_p is None or self.mask_p == 0.0):
584
+ return input
585
+ else:
586
+ if self.p > 0. and len(self.broadcast_dims) > 0 and self.training:
587
+ keep_prob = 1.0 - self.p
588
+ dropout_shape = list(input.shape)
589
+ for dim in self.broadcast_dims:
590
+ dropout_shape[dim] = 1
591
+ keep = input.new_empty(dropout_shape).bernoulli_(keep_prob)
592
+ multiplier = keep.broadcast_to(input.shape)
593
+ multiplier.div_(keep_prob)
594
+ input = input * multiplier
595
+ else:
596
+ return F.dropout(input, self.p, self.training, self.inplace)
597
+
598
+
599
+ @dataclass
600
+ class VisionBackboneConfig:
601
+ image_default_input_size: Tuple[int, int] = (336, 336)
602
+ image_patch_size: int = 14
603
+ image_pos_patch_size: int = 14
604
+ image_emb_dim: int = 1024
605
+ image_num_heads: int = 16
606
+ image_num_key_value_heads: int = 16
607
+ image_num_layers: int = 24
608
+ image_head_dim: int = 64
609
+ image_mlp_dim: int = 4096
610
+ image_mlp_activations: str = "gelu"
611
+ image_dropout_rate: float = 0.0
612
+ image_num_pos: int = 577
613
+ image_norm_eps: float = 1e-5
614
+ attention_dropout: float = 0.0
615
+ residual_dropout: float = 0.0
616
+ initializer_range: float = 0.02
617
+ fsdp_wrap: bool = False
618
+ resize_mode: str = "default"
619
+
620
+ def __post_init__(self):
621
+ self.image_default_input_size = tuple(self.image_default_input_size) # type: ignore[assignment]
622
+
623
+ @property
624
+ def image_num_patch(self):
625
+ h, w = self.image_default_input_size
626
+ return h // self.image_patch_size, w // self.image_patch_size
627
+
628
+
629
+ @dataclass
630
+ class FullMolmoConfig:
631
+ d_model: int = 768
632
+ n_heads: int = 12
633
+ n_kv_heads: Optional[int] = None
634
+ qkv_bias: bool = False
635
+ clip_qkv: Optional[float] = None
636
+ n_layers: int = 12
637
+ mlp_ratio: int = 4
638
+ mlp_hidden_size: Optional[int] = None
639
+ activation_type: str = "swiglu"
640
+ block_group_size: int = 1
641
+ rope: bool = True
642
+ rope_full_precision: bool = True
643
+ rope_theta: float = 10000.
644
+ rope_impl: str = "interleave"
645
+ vision_backbone: Optional[VisionBackboneConfig] = None
646
+ attention_type: str = "sdpa"
647
+ float32_attention: bool = True
648
+ attention_dropout: float = 0.1
649
+ response_attention_dropout: float = 0.0
650
+ multi_query_attention: Optional[bool] = None
651
+ attention_layer_norm: bool = False
652
+ residual_dropout: float = 0.1
653
+ embedding_dropout: float = 0.1
654
+ layer_norm_type: str = "default"
655
+ layer_norm_with_affine: bool = True
656
+ layer_norm_eps: Optional[float] = None
657
+ attention_layer_norm_with_affine: bool = True
658
+ max_sequence_length: int = 1024
659
+ max_position_embeddings: Optional[int] = None
660
+ include_bias: bool = True
661
+ bias_for_layer_norm: Optional[bool] = None
662
+ scale_logits: bool = False
663
+ vocab_size: int = 50257
664
+ embedding_size: Optional[int] = 50304
665
+ additional_vocab_size: Optional[int] = None
666
+ new_embedding_init_range: float = 0.02
667
+ weight_tying: bool = True
668
+ pad_token_id: int = -1
669
+ init_device: Optional[str] = None
670
+ init_std: float = 0.02
671
+ init_cutoff_factor: Optional[float] = None
672
+ norm_after: bool = False
673
+ precision: Optional[str] = None
674
+ image_padding_embed: Optional[str] = None
675
+ vit_layers: Tuple = (-1,)
676
+ image_pooling_h: int = 2
677
+ image_pooling_w: int = 2
678
+ image_pooling_2d: str = "attention"
679
+ image_projector: str = "mlp"
680
+ image_feature_dropout: float = 0.0
681
+ initializer_range: float = 0.02
682
+ normalize_input_embeds: bool = False
683
+ use_position_ids: bool = True
684
+
685
+ @property
686
+ def effective_n_kv_heads(self) -> int:
687
+ if self.n_kv_heads is None:
688
+ if self.multi_query_attention is True:
689
+ return 1
690
+ else:
691
+ return self.n_heads
692
+ else:
693
+ if self.multi_query_attention is None:
694
+ return self.n_kv_heads
695
+ if self.multi_query_attention:
696
+ n_kv_heads_should_be = 1
697
+ else:
698
+ n_kv_heads_should_be = self.n_heads
699
+ if self.n_kv_heads == n_kv_heads_should_be:
700
+ return n_kv_heads_should_be
701
+ else:
702
+ raise MolmoConfigurationError(
703
+ "You can't set `multi_query_attention` and `n_kv_heads` at the same time."
704
+ )
705
+
706
+ @property
707
+ def image_num_patch(self):
708
+ assert self.vision_backbone is not None
709
+ return self.vision_backbone.image_num_patch
710
+
711
+ @property
712
+ def image_patch_size(self):
713
+ assert self.vision_backbone is not None
714
+ return self.visoin_backbone.image_patch_size
715
+
716
+ def llm_patches_per_crop(self):
717
+ h, w = self.image_num_patch
718
+ # Round up in case we need to pad the image features for pooling
719
+ h = (h + self.image_pooling_h - 1) // self.image_pooling_h
720
+ w = (w + self.image_pooling_w - 1) // self.image_pooling_w
721
+ return h, w
722
+
723
+
724
+ def _expand_token(token, batch_size: int):
725
+ return token.view(1, 1, -1).expand(batch_size, -1, -1)
726
+
727
+
728
+ class LayerNormFp32(nn.LayerNorm):
729
+ """Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back).
730
+ Derived from https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/transformer.py.
731
+ """
732
+
733
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
734
+ orig_type = x.dtype
735
+ x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps)
736
+ return x.to(orig_type)
737
+
738
+
739
+ class ViTMLP(nn.Module):
740
+ def __init__(self, config: FullMolmoConfig):
741
+ super().__init__()
742
+ self.config = config
743
+ v_cfg = config.vision_backbone
744
+
745
+ self.w1 = nn.Linear(
746
+ v_cfg.image_emb_dim,
747
+ v_cfg.image_mlp_dim,
748
+ bias=True,
749
+ device=config.init_device,
750
+ )
751
+ # Activation function.
752
+ cfg = deepcopy(config)
753
+ cfg.activation_type = v_cfg.image_mlp_activations
754
+ self.act = Activation.build(cfg)
755
+ self.w2 = nn.Linear(
756
+ v_cfg.image_mlp_dim,
757
+ v_cfg.image_emb_dim,
758
+ bias=True,
759
+ device=config.init_device,
760
+ )
761
+
762
+ def reset_parameters(self):
763
+ v_cfg = self.config.vision_backbone
764
+ nn.init.trunc_normal_(self.w1.weight, std=math.sqrt(1 / v_cfg.image_emb_dim), a=-2.0, b=2.0)
765
+ nn.init.trunc_normal_(self.w2.weight, std=math.sqrt(1 / v_cfg.image_mlp_dim), a=-2.0, b=2.0)
766
+ nn.init.zeros_(self.w1.bias)
767
+ nn.init.zeros_(self.w2.bias)
768
+
769
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
770
+ x = self.w1(x)
771
+ x = self.act(x)
772
+ x = self.w2(x)
773
+ return x
774
+
775
+
776
+
777
+ class ResidualAttentionBlock(nn.Module):
778
+
779
+ def __init__(self, config: FullMolmoConfig):
780
+ super().__init__()
781
+ self.config = config
782
+
783
+ v_cfg = config.vision_backbone
784
+ self.attention = MultiHeadDotProductAttention(config)
785
+ self.feed_forward = ViTMLP(config)
786
+ self.attention_norm = nn.LayerNorm(
787
+ v_cfg.image_emb_dim,
788
+ eps=v_cfg.image_norm_eps,
789
+ device=config.init_device,
790
+ )
791
+ self.ffn_norm = nn.LayerNorm(
792
+ v_cfg.image_emb_dim,
793
+ eps=v_cfg.image_norm_eps,
794
+ device=config.init_device,
795
+ )
796
+
797
+ def reset_parameters(self):
798
+ self.attention.reset_parameters()
799
+ self.feed_forward.reset_parameters()
800
+ self.attention_norm.reset_parameters()
801
+ self.ffn_norm.reset_parameters()
802
+
803
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
804
+ x = x + self.attention(self.attention_norm(x))
805
+ x = x + self.feed_forward(self.ffn_norm(x))
806
+ return x
807
+
808
+
809
+ class BlockCollection(nn.Module):
810
+
811
+ def __init__(self, config: FullMolmoConfig):
812
+ super().__init__()
813
+ self.config = config
814
+ self.grad_checkpointing: bool = False
815
+
816
+ v_cfg = config.vision_backbone
817
+ self.resblocks = nn.ModuleList([
818
+ ResidualAttentionBlock(config) for _ in range(v_cfg.image_num_layers)
819
+ ])
820
+
821
+ def reset_parameters(self):
822
+ for r in self.resblocks:
823
+ r.reset_parameters()
824
+
825
+ def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
826
+ hidden_states = []
827
+ for r in self.resblocks:
828
+ x = r(x)
829
+ hidden_states.append(x)
830
+ return hidden_states
831
+
832
+
833
+ class VisionTransformer(nn.Module):
834
+
835
+ def __init__(self, config: FullMolmoConfig):
836
+ super().__init__()
837
+ self.config = config
838
+
839
+ v_cfg = config.vision_backbone
840
+ # class embeddings and positional embeddings
841
+ self.scale = v_cfg.image_emb_dim ** -0.5
842
+ self.class_embedding = nn.Parameter(
843
+ torch.zeros(v_cfg.image_emb_dim, device=config.init_device),
844
+ )
845
+ self.num_prefix_tokens: int = 1
846
+ self.positional_embedding = nn.Parameter(
847
+ torch.zeros(v_cfg.image_num_pos, v_cfg.image_emb_dim, device=config.init_device),
848
+ )
849
+
850
+ image_patch_size = v_cfg.image_patch_size
851
+ self.patch_embedding = nn.Linear(
852
+ image_patch_size * image_patch_size * 3,
853
+ v_cfg.image_emb_dim,
854
+ bias=False,
855
+ device=config.init_device,
856
+ )
857
+
858
+ self.pre_ln = LayerNormFp32(
859
+ v_cfg.image_emb_dim,
860
+ eps=v_cfg.image_norm_eps,
861
+ device=config.init_device,
862
+ )
863
+
864
+ self.transformer = BlockCollection(config)
865
+
866
+ @torch.jit.ignore
867
+ def set_grad_checkpointing(self, enable=True):
868
+ self.transformer.grad_checkpointing = enable
869
+
870
+ def reset_parameters(self):
871
+ nn.init.normal_(self.class_embedding, std=self.scale)
872
+ nn.init.normal_(self.positional_embedding, std=self.scale)
873
+ nn.init.normal_(self.patch_embedding.weight, std=0.02)
874
+ self.pre_ln.reset_parameters()
875
+ self.transformer.reset_parameters()
876
+
877
+ def add_pos_emb(self, x: torch.Tensor, patch_num: int) -> torch.Tensor:
878
+ cls_emb = self.positional_embedding[0:1]
879
+ pos_emb = self.positional_embedding[1:]
880
+
881
+ pos_emb = pos_emb.reshape(
882
+ (int(math.sqrt(pos_emb.shape[0])), int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1])
883
+ )
884
+
885
+ (patch_num_0, patch_num_1) = patch_num
886
+
887
+ if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1:
888
+ # Dervied from https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
889
+ # antialias: default True in jax.image.resize
890
+ pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2)
891
+ pos_emb = F.interpolate(
892
+ pos_emb, size=(patch_num_0, patch_num_1), mode="bicubic", align_corners=False, antialias=True,
893
+ )
894
+ pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0)
895
+
896
+ pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1])
897
+ x = x + torch.cat([cls_emb[None, :, :], pos_emb[None, :, :]], dim=1).to(x.dtype)
898
+ return x
899
+
900
+ def forward(self, x: torch.Tensor, patch_num: int = None) -> List[torch.Tensor]:
901
+ """
902
+ : param x: (batch_size, num_patch, n_pixels)
903
+ """
904
+ if patch_num is None:
905
+ patch_num = self.config.vision_backbone.image_num_patch
906
+ B, N, D = x.shape
907
+
908
+ x = self.patch_embedding(x)
909
+
910
+ # class embeddings and positional embeddings
911
+ x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1)
912
+ x = self.add_pos_emb(x, patch_num)
913
+
914
+ x = self.pre_ln(x)
915
+
916
+ hidden_states = self.transformer(x)
917
+ return hidden_states
918
+
919
+
920
+ class MultiHeadDotProductAttention(nn.Module):
921
+ def __init__(self, config: FullMolmoConfig, use_bias: bool = True, is_vit_layer: Optional[bool] = True):
922
+ super().__init__()
923
+ self.config = config
924
+ self.use_bias = use_bias
925
+
926
+ v_cfg = config.vision_backbone
927
+ self.embed_dim = v_cfg.image_emb_dim
928
+ self.num_heads = v_cfg.image_num_heads
929
+ self.head_dim = v_cfg.image_head_dim
930
+ self.num_key_value_heads = v_cfg.image_num_key_value_heads
931
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
932
+ self.initializer_range = v_cfg.initializer_range
933
+ self.is_vit_layer = is_vit_layer
934
+
935
+ nlayers = 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers)
936
+
937
+ self.wq = nn.Linear(
938
+ nlayers * self.embed_dim,
939
+ self.num_heads * self.head_dim,
940
+ bias=use_bias,
941
+ device=config.init_device,
942
+ )
943
+ self.wk = nn.Linear(
944
+ nlayers * self.embed_dim,
945
+ self.num_key_value_heads * self.head_dim,
946
+ bias=use_bias,
947
+ device=config.init_device,
948
+ )
949
+ self.wv = nn.Linear(
950
+ nlayers * self.embed_dim,
951
+ self.num_key_value_heads * self.head_dim,
952
+ bias=use_bias,
953
+ device=config.init_device,
954
+ )
955
+ self.wo = nn.Linear(
956
+ self.num_heads * self.head_dim,
957
+ self.embed_dim,
958
+ bias=use_bias,
959
+ device=config.init_device,
960
+ )
961
+ self.attention_dropout: Optional[Dropout] = None
962
+ if v_cfg.attention_dropout > 0:
963
+ self.attention_dropout = Dropout(v_cfg.attention_dropout, broadcast_dims=(0, 1))
964
+ self.residual_dropout = Dropout(v_cfg.residual_dropout)
965
+
966
+ def reset_parameters(self):
967
+ nn.init.normal_(self.wq.weight, std=self.initializer_range)
968
+ nn.init.normal_(self.wk.weight, std=self.initializer_range)
969
+ nn.init.normal_(self.wv.weight, std=self.initializer_range)
970
+ nn.init.normal_(self.wo.weight, std=self.initializer_range)
971
+ if self.use_bias:
972
+ nn.init.constant_(self.wq.bias, 0)
973
+ nn.init.constant_(self.wk.bias, 0)
974
+ nn.init.constant_(self.wv.bias, 0)
975
+ nn.init.constant_(self.wo.bias, 0)
976
+
977
+ def _split_heads(self, hidden_states, num_heads) -> torch.Tensor:
978
+ return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
979
+
980
+ def _merge_heads(self, hidden_states) -> torch.Tensor:
981
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
982
+
983
+ def forward(self, inputs_q: torch.Tensor, inputs_kv: Optional[torch.Tensor] = None) -> torch.Tensor:
984
+
985
+ if inputs_kv is not None:
986
+ inputs_k = inputs_kv
987
+ inputs_v = inputs_kv
988
+ else:
989
+ inputs_k = inputs_q
990
+ inputs_v = inputs_q
991
+
992
+ xq, xk, xv = self.wq(inputs_q), self.wk(inputs_k), self.wv(inputs_v)
993
+
994
+ xq = self._split_heads(xq, self.num_heads)
995
+ xk = self._split_heads(xk, self.num_key_value_heads)
996
+ xv = self._split_heads(xv, self.num_key_value_heads)
997
+
998
+ if self.num_heads != self.num_key_value_heads:
999
+ xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
1000
+ xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
1001
+
1002
+ og_dtype = xq.dtype
1003
+
1004
+ if self.config.float32_attention:
1005
+ xq = xq.to(torch.float)
1006
+ xk = xk.to(torch.float)
1007
+
1008
+ if self.config.attention_type == "direct":
1009
+ attn_weights = torch.einsum("...qhd,...khd->...hqk", xq / math.sqrt(xq.size(-1)), xk)
1010
+ attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(xq.dtype)
1011
+ if self.attention_dropout is not None:
1012
+ attn_weights = self.attention_dropout(attn_weights)
1013
+ attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights.to(xv.dtype), xv)
1014
+
1015
+ elif self.config.attention_type == "sdpa":
1016
+ attn_output = F.scaled_dot_product_attention(
1017
+ xq.transpose(1, 2).contiguous(),
1018
+ xk.transpose(1, 2).contiguous(),
1019
+ xv.transpose(1, 2).contiguous(),
1020
+ is_causal=False,
1021
+ dropout_p=self.config.vision_backbone.attention_dropout
1022
+ ).transpose(1, 2)
1023
+ else:
1024
+ raise NotImplementedError(self.config.attention_type)
1025
+ attn_output = attn_output.to(og_dtype)
1026
+ attn_output = self._merge_heads(attn_output)
1027
+ attn_output = self.wo(attn_output)
1028
+ attn_output = self.residual_dropout(attn_output)
1029
+
1030
+ return attn_output
1031
+
1032
+
1033
+ class MultiHeadAttentionPool(nn.Module):
1034
+ def __init__(
1035
+ self,
1036
+ config: FullMolmoConfig,
1037
+ factor: int = 1,
1038
+ use_bias: bool = True,
1039
+ dropout: bool = True,
1040
+ output_layer: bool = True,
1041
+ mean_residual: bool = False,
1042
+ query: str = "mean",
1043
+ is_vit_layer: Optional[bool] = True
1044
+ ):
1045
+ super().__init__()
1046
+ self.config = config
1047
+ self.factor = factor
1048
+ self.use_bias = use_bias
1049
+ self.dropout = dropout
1050
+ self.output_layer = output_layer
1051
+ self.mean_residual = mean_residual
1052
+ self.query = query
1053
+
1054
+ v_cfg = config.vision_backbone
1055
+ input_dim = v_cfg.image_emb_dim
1056
+ self.embed_dim = v_cfg.image_emb_dim * factor
1057
+ self.num_heads = v_cfg.image_num_heads
1058
+ self.head_dim = v_cfg.image_head_dim * factor
1059
+ self.num_key_value_heads = v_cfg.image_num_key_value_heads
1060
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
1061
+ self.initializer_range = v_cfg.initializer_range
1062
+
1063
+ nlayers = 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers)
1064
+
1065
+ if query != "vector":
1066
+ self.wq = nn.Linear(
1067
+ nlayers * input_dim,
1068
+ self.num_heads * self.head_dim,
1069
+ bias=use_bias,
1070
+ device=config.init_device,
1071
+ )
1072
+ self.wk = nn.Linear(
1073
+ nlayers * input_dim,
1074
+ self.num_key_value_heads * self.head_dim,
1075
+ bias=use_bias,
1076
+ device=config.init_device,
1077
+ )
1078
+ self.wv = nn.Linear(
1079
+ nlayers * input_dim,
1080
+ self.num_key_value_heads * self.head_dim,
1081
+ bias=use_bias,
1082
+ device=config.init_device,
1083
+ )
1084
+
1085
+ if query == "vector":
1086
+ self.attention_query = nn.Parameter(
1087
+ torch.zeros(
1088
+ 1, self.num_key_value_heads * self.head_dim, device=config.init_device,
1089
+ ),
1090
+ )
1091
+
1092
+ if output_layer:
1093
+ self.wo = nn.Linear(
1094
+ self.num_heads * self.head_dim,
1095
+ self.embed_dim,
1096
+ bias=use_bias,
1097
+ device=config.init_device,
1098
+ )
1099
+ self.attention_dropout = Dropout(v_cfg.attention_dropout, broadcast_dims=(0, 1))
1100
+ if dropout:
1101
+ self.residual_dropout = Dropout(v_cfg.residual_dropout)
1102
+
1103
+ def reset_parameters(self):
1104
+ if self.query != "vector":
1105
+ nn.init.normal_(self.wq.weight, std=self.initializer_range)
1106
+ nn.init.normal_(self.wk.weight, std=self.initializer_range)
1107
+ nn.init.normal_(self.wv.weight, std=self.initializer_range)
1108
+ if self.output_layer:
1109
+ nn.init.normal_(self.wo.weight, std=self.initializer_range)
1110
+ if self.use_bias:
1111
+ if self.query != "vector":
1112
+ nn.init.constant_(self.wq.bias, 0)
1113
+ nn.init.constant_(self.wk.bias, 0)
1114
+ nn.init.constant_(self.wv.bias, 0)
1115
+ if self.output_layer:
1116
+ nn.init.constant_(self.wo.bias, 0)
1117
+ if self.query == "vector":
1118
+ nn.init.normal_(self.attention_query, std=self.initializer_range)
1119
+
1120
+ def _split_heads(self, hidden_states, num_heads):
1121
+ return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
1122
+
1123
+ def _merge_heads(self, hidden_states):
1124
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
1125
+
1126
+ def forward(self, inputs_kv: torch.Tensor) -> torch.Tensor:
1127
+
1128
+ xk, xv = self.wk(inputs_kv), self.wv(inputs_kv)
1129
+
1130
+ if self.query == "mean":
1131
+ inputs_q = inputs_kv.mean(dim=1, keepdim=True)
1132
+ xq = self.wq(inputs_q)
1133
+ elif self.query == "first":
1134
+ inputs_q = inputs_kv[:, :1]
1135
+ xq = self.wq(inputs_q)
1136
+ elif self.query == "vector":
1137
+ xq = self.attention_query.expand(inputs_kv.size(0), -1, -1)
1138
+ elif self.query == "constant":
1139
+ inputs_q = torch.ones_like(inputs_kv[:, :1]) / math.sqrt(inputs_kv.shape[-1])
1140
+ xq = self.wq(inputs_q)
1141
+ else:
1142
+ raise ValueError(f"Unknown query type: {self.query}")
1143
+
1144
+ xq = self._split_heads(xq, self.num_heads)
1145
+ xk = self._split_heads(xk, self.num_key_value_heads)
1146
+ xv = self._split_heads(xv, self.num_key_value_heads)
1147
+
1148
+ if self.num_heads != self.num_key_value_heads:
1149
+ xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
1150
+ xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
1151
+
1152
+ xq = xq.to(torch.float)
1153
+ xk = xk.to(torch.float)
1154
+
1155
+ xq = xq / math.sqrt(xq.size(-1))
1156
+ attn_weights = torch.einsum("...qhd,...khd->...hqk", xq, xk)
1157
+
1158
+ attn_weights = F.softmax(attn_weights, dim=-1).to(xq.dtype)
1159
+
1160
+ attn_weights = self.attention_dropout(attn_weights).to(xv.dtype)
1161
+
1162
+ attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights, xv)
1163
+ attn_output = self._merge_heads(attn_output)
1164
+ if self.output_layer:
1165
+ attn_output = self.wo(attn_output)
1166
+ if self.dropout:
1167
+ attn_output = self.residual_dropout(attn_output)
1168
+ if self.mean_residual:
1169
+ attn_output += inputs_kv.mean(dim=1, keepdim=True)
1170
+
1171
+ return attn_output
1172
+
1173
+
1174
+ class MLP(nn.Module):
1175
+ def __init__(self, config: FullMolmoConfig, input_dim: int, dropout: float = 0.0):
1176
+ super().__init__()
1177
+ self.config = config
1178
+ self.hidden_size = (
1179
+ config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
1180
+ )
1181
+ self.initializer_range = config.initializer_range
1182
+
1183
+ self.w1 = nn.Linear(
1184
+ input_dim,
1185
+ self.hidden_size // 2,
1186
+ bias=False,
1187
+ device=config.init_device,
1188
+ )
1189
+ self.w2 = nn.Linear(
1190
+ self.hidden_size // 2,
1191
+ config.d_model,
1192
+ bias=False,
1193
+ device=config.init_device,
1194
+ )
1195
+ self.w3 = nn.Linear(
1196
+ input_dim,
1197
+ self.hidden_size // 2,
1198
+ bias=False,
1199
+ device=config.init_device,
1200
+ )
1201
+ # Activation function.
1202
+ self.act = Activation.build(config)
1203
+ self.dropout = Dropout(dropout)
1204
+
1205
+ def reset_parameters(self):
1206
+ nn.init.normal_(self.w1.weight, std=self.initializer_range)
1207
+ nn.init.normal_(self.w2.weight, std=self.initializer_range)
1208
+ nn.init.normal_(self.w3.weight, std=self.initializer_range)
1209
+
1210
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
1211
+ x = self.w2(self.act(self.w1(x), self.w3(x)))
1212
+ x = self.dropout(x)
1213
+ return x
1214
+
1215
+
1216
+ class Residual(nn.Module):
1217
+ def __init__(self, submodule: nn.Module):
1218
+ super().__init__()
1219
+ self.submodule = submodule
1220
+
1221
+ def reset_parameters(self):
1222
+ self.submodule.reset_parameters()
1223
+
1224
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
1225
+ return x + self.submodule(x)
1226
+
1227
+
1228
+ class OLMoVisionBackbone(nn.Module):
1229
+ def __init__(self, config: FullMolmoConfig):
1230
+ super().__init__()
1231
+ self.config = config
1232
+ self.image_vit = VisionTransformer(config)
1233
+
1234
+ input_dim: int = None
1235
+ self.image_pooling_2d: nn.Module = None
1236
+ if config.image_pooling_2d in {ImagePooling2DType.attention, ImagePooling2DType.attention_meanq}:
1237
+ self.image_pooling_2d = MultiHeadDotProductAttention(config, is_vit_layer=False)
1238
+ input_dim = config.vision_backbone.image_emb_dim
1239
+ elif config.image_pooling_2d == ImagePooling2DType.attention_2wide:
1240
+ cfg = deepcopy(config)
1241
+ cfg.vision_backbone.image_emb_dim *= 2
1242
+ cfg.vision_backbone.image_head_dim *= 2
1243
+ self.image_pooling_2d = MultiHeadDotProductAttention(cfg, is_vit_layer=False)
1244
+ input_dim = cfg.vision_backbone.image_emb_dim
1245
+ elif config.image_pooling_2d == ImagePooling2DType.attention_v2:
1246
+ assert config.vit_layers is not None
1247
+ use_bias = True
1248
+ dropout = True
1249
+ output_layer = True
1250
+ query = "mean"
1251
+ mean_residual = False
1252
+ factor = len(config.vit_layers)
1253
+ self.image_pooling_2d = MultiHeadAttentionPool(
1254
+ config,
1255
+ factor=factor,
1256
+ use_bias=use_bias,
1257
+ dropout=dropout,
1258
+ output_layer=output_layer,
1259
+ mean_residual=mean_residual,
1260
+ query=query,
1261
+ is_vit_layer=False,
1262
+ )
1263
+ input_dim = config.vision_backbone.image_emb_dim * factor
1264
+ elif config.image_pooling_2d in [ImagePooling2DType.none, ImagePooling2DType.stack]:
1265
+ self.image_pooling_2d = None
1266
+ nlayers = 1 if config.vit_layers is None else len(config.vit_layers)
1267
+ input_dim = nlayers * config.vision_backbone.image_emb_dim
1268
+ else:
1269
+ raise NotImplementedError(f"Unknown image pooling 2D method: {config.image_pooling_2d}")
1270
+
1271
+ self.input_dim = input_dim
1272
+
1273
+ # `MLP` assume the activation takes two inputs, so it must be a 'llama' version
1274
+ if config.activation_type == ActivationType.swiglu:
1275
+ mlp_config = replace(config, activation_type=ActivationType.llama_swiglu)
1276
+ elif config.activation_type == ActivationType.gelu:
1277
+ mlp_config = replace(config, activation_type=ActivationType.llama_geglu)
1278
+ else:
1279
+ mlp_config = config
1280
+ if config.image_projector == ImageProjectType.mlpx2:
1281
+ self.image_projector = nn.ModuleList(
1282
+ [MLP(mlp_config, input_dim), Residual(MLP(config, input_dim))]
1283
+ )
1284
+ elif config.image_projector == ImageProjectType.mlp:
1285
+ self.image_projector = MLP(mlp_config, input_dim)
1286
+ elif config.image_projector == ImageProjectType.linear:
1287
+ self.image_projector = nn.Linear(
1288
+ input_dim,
1289
+ config.d_model,
1290
+ bias=False,
1291
+ device=config.init_device,
1292
+ )
1293
+ else:
1294
+ raise NotImplementedError(f"Unknown image projector: {config.image_projector}")
1295
+
1296
+ self.image_feature_dropout = Dropout(config.image_feature_dropout)
1297
+
1298
+ def reset_parameters(self):
1299
+ if self.image_pooling_2d is not None:
1300
+ self.image_pooling_2d.reset_parameters()
1301
+ if self.config.image_projector == "2mlp":
1302
+ for module in self.image_projector:
1303
+ module.reset_parameters()
1304
+ elif self.config.image_projector == "linear":
1305
+ nn.init.xavier_uniform_(self.image_projector.weight)
1306
+ else:
1307
+ self.image_projector.reset_parameters()
1308
+
1309
+ def forward(self, images: torch.Tensor, image_masks: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
1310
+ raise NotImplementedError
1311
+
1312
+
1313
+ class OLMoPretrainedVisionBackbone(OLMoVisionBackbone):
1314
+ def __init__(self, config: FullMolmoConfig):
1315
+ super().__init__(config)
1316
+ v_cfg = self.config.vision_backbone
1317
+ self.grad_checkpointing = False
1318
+
1319
+ self.num_prefix_tokens = self.image_vit.num_prefix_tokens
1320
+ assert self.num_prefix_tokens in {0, 1}, "Only 0 or 1 prefix tokens are supported"
1321
+
1322
+ self.pad_embed = None
1323
+ if config.image_padding_embed:
1324
+ image_dim = v_cfg.image_emb_dim*len(self.config.vit_layers)
1325
+ if config.image_padding_embed in ["pad_embed", "regress"]:
1326
+ self.pad_embed = nn.Parameter(
1327
+ torch.zeros((image_dim,), device=config.init_device))
1328
+ elif config.image_padding_embed == "pad_and_partial_pad":
1329
+ self.pad_embed = nn.Parameter(
1330
+ torch.zeros((2, image_dim), device=config.init_device))
1331
+ else:
1332
+ raise ValueError(config.image_padding_embed)
1333
+
1334
+ def reset_parameters(self):
1335
+ super().reset_parameters()
1336
+ self.image_vit.reset_parameters()
1337
+
1338
+ def encode_image(self, images: torch.Tensor) -> torch.Tensor:
1339
+ """
1340
+ : param images: (batch_size, num_crops, num_patch, n_pixels)
1341
+ """
1342
+ cfg = self.config
1343
+ v_cfg = self.config.vision_backbone
1344
+ B, T, N, D = images.shape
1345
+
1346
+ mask = ~torch.all(images.view(B * T, N, D) == -1, dim=(1, 2), keepdim=True)
1347
+
1348
+ # Output all hidden states
1349
+ # n_layers x (batch_num_crops, (1+)n_tokens, image_emb_dim)
1350
+ images = images.view(B * T, N, D)
1351
+ image_features = self.image_vit(images)
1352
+
1353
+ if cfg.vit_layers is not None:
1354
+ features = []
1355
+ for layer in cfg.vit_layers:
1356
+ features.append(image_features[layer])
1357
+ image_features = torch.cat(features, dim=-1)
1358
+ else:
1359
+ image_features = image_features[-1]
1360
+
1361
+ cls_embed: torch.Tensor = None
1362
+ if self.num_prefix_tokens > 0:
1363
+ cls_embed = image_features[:, 0]
1364
+ image_features = image_features[:, 1:]
1365
+
1366
+ image_features = image_features * mask
1367
+ image_features = image_features.view(B, T, N, -1)
1368
+
1369
+ cls_embed = cls_embed.view(B, T, -1) if cls_embed is not None else None
1370
+
1371
+ return image_features, cls_embed
1372
+
1373
+ def forward(self, images: torch.Tensor, image_masks: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
1374
+ cfg = self.config
1375
+
1376
+ # image_features: (batch_size, num_crops(=num_image), num_patch, nximage_emb_dim)
1377
+ batch_size, num_image = images.shape[:2]
1378
+ image_features, cls_embed = self.encode_image(images)
1379
+
1380
+ if cfg.image_padding_embed:
1381
+ assert image_masks is not None
1382
+ if cfg.image_padding_embed == "pad_embed":
1383
+ all_pad = (image_masks == 0).to(dtype=torch.float32)
1384
+ pad_embed = self.pad_embed[None, None, None, :]
1385
+ image_features = image_features + pad_embed * torch.unsqueeze(all_pad, -1)
1386
+ elif cfg.image_padding_embed == "regress":
1387
+ pad_embed = self.pad_embed[None, None, None, :]
1388
+ image_features = image_features + pad_embed * torch.unsqueeze(torch.maximum(image_masks, torch.zeros_like(image_masks)), -1)
1389
+ elif cfg.image_padding_embed == "pad_and_partial_pad":
1390
+ pad_embed = self.pad_embed[:, None, None, None, :]
1391
+ all_pad = image_masks == 0
1392
+ partial_pad = torch.logical_and(image_masks < 1, torch.logical_not(all_pad)).to(dtype=torch.float32)
1393
+ all_pad = all_pad.to(dtype=torch.float32)
1394
+ image_features = image_features + pad_embed[0] * torch.unsqueeze(all_pad, -1)
1395
+ image_features = image_features + pad_embed[1] * torch.unsqueeze(partial_pad, -1)
1396
+ else:
1397
+ raise ValueError(cfg.image_padding_embed)
1398
+
1399
+ image_features = self.image_feature_dropout(image_features)
1400
+ if cls_embed is not None:
1401
+ cls_embed = self.image_feature_dropout(cls_embed)
1402
+
1403
+ image_features = image_features.reshape(
1404
+ (batch_size, num_image) + cfg.image_num_patch + (-1,),
1405
+ )
1406
+
1407
+ if cfg.image_num_patch[0] % cfg.image_pooling_h == 1:
1408
+ # Pad so we can still pool 2x2 patches
1409
+ image_features = F.pad(
1410
+ image_features,
1411
+ (0, 0, 0, 1, 0, 1, 0, 0, 0, 0),
1412
+ )
1413
+
1414
+ # image pooling
1415
+ image_features = einops.rearrange(
1416
+ image_features,
1417
+ 'b n (h dh) (w dw) c -> (b n h w) (dh dw) c',
1418
+ dh=cfg.image_pooling_h,
1419
+ dw=cfg.image_pooling_w,
1420
+ )
1421
+
1422
+ if cfg.image_pooling_2d == ImagePooling2DType.attention_meanq:
1423
+ query = image_features.mean(-2, keepdim=True)
1424
+ image_features = self.image_pooling_2d(query, image_features)
1425
+ elif cfg.image_pooling_2d not in {ImagePooling2DType.none, ImagePooling2DType.stack}:
1426
+ if self.grad_checkpointing:
1427
+ from torch.utils.checkpoint import checkpoint
1428
+ image_features = checkpoint(self.image_pooling_2d, image_features[:, :1, :], image_features, use_reentrant=False)
1429
+ else:
1430
+ image_features = self.image_pooling_2d(image_features[:, :1, :], image_features)
1431
+
1432
+ h, w = cfg.llm_patches_per_crop()
1433
+ image_features = image_features.reshape(batch_size, num_image, h * w, -1)
1434
+
1435
+ # MLP layer to map the feature.
1436
+ if self.grad_checkpointing:
1437
+ from torch.utils.checkpoint import checkpoint
1438
+ image_features = checkpoint(self.image_projector, image_features, use_reentrant=False)
1439
+ else:
1440
+ image_features = self.image_projector(image_features)
1441
+
1442
+ # image_features: (batch_size, num_image, num_patch, d_model)
1443
+ # cls_embed: (batch_size, num_image, d_model)
1444
+ return image_features, cls_embed
1445
+
1446
+
1447
+ class ModuleType(str, Enum):
1448
+ in_module = "in"
1449
+ out_module = "out"
1450
+ emb = "emb"
1451
+ final_out = "final_out"
1452
+
1453
+
1454
+ def init_weights(
1455
+ config: FullMolmoConfig,
1456
+ module: Union[nn.Linear, nn.Embedding],
1457
+ d: Optional[int] = None,
1458
+ layer_id: Optional[int] = None,
1459
+ std_factor: float = 1.0,
1460
+ type_of_module: Optional[ModuleType] = None,
1461
+ ) -> None:
1462
+ d = d if d is not None else config.d_model
1463
+ std = config.init_std * std_factor
1464
+ if config.init_cutoff_factor is not None:
1465
+ cutoff_value = config.init_cutoff_factor * std
1466
+ nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value)
1467
+ else:
1468
+ nn.init.normal_(module.weight, mean=0.0, std=std)
1469
+
1470
+
1471
+ class LlamaSwiGLU(nn.Module):
1472
+ def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
1473
+ return F.silu(x1) * x2
1474
+
1475
+ @property
1476
+ def output_multiplier(self) -> float:
1477
+ return 0.5
1478
+
1479
+
1480
+ class SwiGLU(nn.Module):
1481
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
1482
+ x, gate = x.chunk(2, dim=-1)
1483
+ return F.silu(gate) * x
1484
+
1485
+ @property
1486
+ def output_multiplier(self) -> float:
1487
+ return 0.5
1488
+
1489
+
1490
+ class Activation(nn.Module):
1491
+ def __init__(self, config: FullMolmoConfig):
1492
+ super().__init__()
1493
+ self.config = config
1494
+
1495
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
1496
+ raise NotImplementedError
1497
+
1498
+ @property
1499
+ def output_multiplier(self) -> float:
1500
+ raise NotImplementedError
1501
+
1502
+ @classmethod
1503
+ def build(cls, config: FullMolmoConfig) -> 'Activation':
1504
+ if config.activation_type == "quick_gelu":
1505
+ return QuickGELU(config)
1506
+ elif config.activation_type == "gelu":
1507
+ return cast(Activation, GELU(approximate="none"))
1508
+ elif config.activation_type == "gelu_tanh":
1509
+ return cast(Activation, GELU(approximate="tanh"))
1510
+ elif config.activation_type == "relu":
1511
+ return cast(Activation, ReLU(inplace=False))
1512
+ elif config.activation_type == "silu":
1513
+ return cast(Activation, SiLU(inplace=False))
1514
+ # elif config.activation_type == "llama_geglu":
1515
+ # return LlamaGEGLU(config)
1516
+ # elif config.activation_type == "llama_geglu_tanh":
1517
+ # return LlamaGEGLUTanh(config)
1518
+ elif config.activation_type == "llama_swiglu":
1519
+ return LlamaSwiGLU()
1520
+ elif config.activation_type == "swiglu":
1521
+ return SwiGLU()
1522
+ else:
1523
+ raise NotImplementedError(f"Unknown activation: '{config.activation_type}'")
1524
+
1525
+
1526
+ class QuickGELU(Activation):
1527
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
1528
+ return x * torch.sigmoid(1.702 * x)
1529
+
1530
+ @property
1531
+ def output_multiplier(self) -> float:
1532
+ return 1.0
1533
+
1534
+
1535
+ class GELU(nn.GELU):
1536
+ @property
1537
+ def output_multiplier(self) -> float:
1538
+ return 1.0
1539
+
1540
+
1541
+ class ReLU(nn.ReLU):
1542
+ @property
1543
+ def output_multiplier(self) -> float:
1544
+ return 1.0
1545
+
1546
+
1547
+ class SiLU(nn.SiLU):
1548
+ @property
1549
+ def output_multiplier(self) -> float:
1550
+ return 1.0
1551
+
1552
+
1553
+ def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor:
1554
+ att_bias = torch.triu(
1555
+ torch.ones(seq_len, seq_len, device=device, dtype=torch.float),
1556
+ diagonal=1,
1557
+ )
1558
+ att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min)
1559
+ return att_bias.view(1, 1, seq_len, seq_len) # type: ignore
1560
+
1561
+
1562
+ def get_causal_attention_bias(cache: BufferCache, seq_len: int, device: torch.device) -> torch.Tensor:
1563
+ if (causal_bias := cache.get("causal_attention_bias")) is not None and causal_bias.shape[-1] >= seq_len:
1564
+ if causal_bias.device != device:
1565
+ causal_bias = causal_bias.to(device)
1566
+ cache["causal_attention_bias"] = causal_bias
1567
+ return causal_bias
1568
+ with torch.autocast(device.type, enabled=False):
1569
+ causal_bias = causal_attention_bias(seq_len, device)
1570
+ cache["causal_attention_bias"] = causal_bias
1571
+ return causal_bias
1572
+
1573
+
1574
+ class LayerNormBase(nn.Module):
1575
+ def __init__(
1576
+ self,
1577
+ config: MolmoConfig,
1578
+ *,
1579
+ size: Optional[int] = None,
1580
+ elementwise_affine: Optional[bool] = True,
1581
+ eps: float = 1e-05,
1582
+ weight_initializer: Optional[Callable] = torch.ones,
1583
+ bias_initializer: Optional[Callable] = torch.zeros,
1584
+ ):
1585
+ super().__init__()
1586
+ self.config = config
1587
+ self.eps = self.config.layer_norm_eps or eps
1588
+ self.normalized_shape = (size or config.d_model,)
1589
+ if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine):
1590
+ self.weight = nn.Parameter(weight_initializer(self.normalized_shape, device=config.init_device))
1591
+ use_bias = self.config.bias_for_layer_norm
1592
+ if use_bias is None:
1593
+ use_bias = self.config.include_bias
1594
+ if use_bias:
1595
+ self.bias = nn.Parameter(bias_initializer(self.normalized_shape, device=config.init_device))
1596
+ else:
1597
+ self.register_parameter("bias", None)
1598
+ else:
1599
+ self.register_parameter("bias", None)
1600
+ self.register_parameter("weight", None)
1601
+
1602
+ @classmethod
1603
+ def build(cls, config: FullMolmoConfig, size: Optional[int] = None, **kwargs):
1604
+ if config.layer_norm_type == "default":
1605
+ return LayerNorm(config, size=size, low_precision=False, **kwargs)
1606
+ elif config.layer_norm_type == "low_precision":
1607
+ return LayerNorm(config, size=size, low_precision=True, **kwargs)
1608
+ elif config.layer_norm_type == "rms":
1609
+ return RMSLayerNorm(config, size=size, **kwargs)
1610
+ else:
1611
+ raise NotImplementedError(f"Unknown LayerNorm type: '{config.layer_norm_type}'")
1612
+
1613
+
1614
+ class RMSLayerNorm(LayerNormBase):
1615
+ """
1616
+ RMS layer norm, a simplified :class:`LayerNorm` implementation
1617
+ """
1618
+
1619
+ def __init__(
1620
+ self,
1621
+ config: FullMolmoConfig,
1622
+ size: Optional[int] = None,
1623
+ elementwise_affine: Optional[bool] = None,
1624
+ eps: float = 1e-5,
1625
+ ):
1626
+ super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
1627
+
1628
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
1629
+ with torch.autocast(enabled=False, device_type=x.device.type):
1630
+ og_dtype = x.dtype
1631
+ x = x.to(torch.float32)
1632
+ variance = x.pow(2).mean(-1, keepdim=True)
1633
+ x = x * torch.rsqrt(variance + self.eps)
1634
+ x = x.to(og_dtype)
1635
+
1636
+ if self.weight is not None:
1637
+ if self.bias is not None:
1638
+ return self.weight * x + self.bias
1639
+ else:
1640
+ return self.weight * x
1641
+ else:
1642
+ return x
1643
+
1644
+
1645
+ class LayerNorm(LayerNormBase):
1646
+ """
1647
+ The default :class:`LayerNorm` implementation which can optionally run in low precision.
1648
+ """
1649
+
1650
+ def __init__(
1651
+ self,
1652
+ config: FullMolmoConfig,
1653
+ size: Optional[int] = None,
1654
+ low_precision: bool = False,
1655
+ elementwise_affine: Optional[bool] = None,
1656
+ eps: float = 1e-05,
1657
+ ):
1658
+ super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
1659
+ self.low_precision = low_precision
1660
+
1661
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
1662
+ if self.low_precision:
1663
+ module_device = x.device
1664
+ downcast_x = self._cast_if_autocast_enabled(x)
1665
+ downcast_weight = (
1666
+ self._cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
1667
+ )
1668
+ downcast_bias = self._cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
1669
+ with torch.autocast(enabled=False, device_type=module_device.type):
1670
+ return F.layer_norm(
1671
+ downcast_x, self.normalized_shape, weight=downcast_weight, bias=downcast_bias, eps=self.eps
1672
+ )
1673
+ else:
1674
+ return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps)
1675
+
1676
+
1677
+ class Molmo(nn.Module):
1678
+ def __init__(self, config: FullMolmoConfig, init_params: bool = True):
1679
+ super().__init__()
1680
+ self.config = config
1681
+ self.__cache = BufferCache()
1682
+
1683
+ # Validate config.
1684
+ if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size:
1685
+ if self.config.embedding_size < self.config.vocab_size:
1686
+ raise MolmoConfigurationError("embedding size should be at least as big as vocab size")
1687
+ elif self.config.embedding_size % 128 != 0:
1688
+ import warnings
1689
+
1690
+ warnings.warn(
1691
+ "Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning
1692
+ )
1693
+ torch.backends.cuda.enable_flash_sdp(True)
1694
+ torch.backends.cuda.enable_mem_efficient_sdp(False) # this is super slow so make sure torch won't use it
1695
+
1696
+ wte = None
1697
+ if self.config.additional_vocab_size is not None:
1698
+ wte = Embedding(
1699
+ config.embedding_size or config.vocab_size,
1700
+ config.additional_vocab_size,
1701
+ config.d_model,
1702
+ device=config.init_device,
1703
+ initializer_range=config.initializer_range,
1704
+ new_embed_initializer_range=config.new_embedding_init_range
1705
+ )
1706
+ else:
1707
+ wte=nn.Embedding(
1708
+ config.embedding_size or config.vocab_size, config.d_model, device=config.init_device
1709
+ )
1710
+
1711
+ self.transformer = nn.ModuleDict(
1712
+ dict(
1713
+ wte=wte,
1714
+ emb_drop=Dropout(config.embedding_dropout),
1715
+ ln_f=LayerNorm.build(config),
1716
+ )
1717
+ )
1718
+
1719
+ blocks = [MolmoBlock.build(i, config, self.__cache) for i in range(config.n_layers)]
1720
+ if self.config.block_group_size > 1:
1721
+ raise NotImplementedError()
1722
+ else:
1723
+ self.transformer.update({"blocks": nn.ModuleList(blocks)})
1724
+
1725
+ if not self.config.rope:
1726
+ self.transformer.update(
1727
+ {"wpe": nn.Embedding(config.max_sequence_length, config.d_model, device=config.init_device)}
1728
+ )
1729
+ if not config.weight_tying:
1730
+ self.transformer.update(
1731
+ {
1732
+ "ff_out": nn.Linear(
1733
+ config.d_model,
1734
+ config.embedding_size or config.vocab_size,
1735
+ bias=config.include_bias,
1736
+ device=config.init_device,
1737
+ )
1738
+ }
1739
+ )
1740
+
1741
+ self.vision_backbone: Optional[OLMoVisionBackbone] = None
1742
+ if config.vision_backbone is not None:
1743
+ self.vision_backbone = OLMoPretrainedVisionBackbone(config)
1744
+
1745
+ self.__num_fwd_flops: Optional[int] = None
1746
+
1747
+ def reset_parameters(self):
1748
+ if self.vision_backbone is not None:
1749
+ self.vision_backbone.reset_parameters()
1750
+ self.reset_non_vision_parameters()
1751
+
1752
+ def reset_non_vision_parameters(self):
1753
+ self.transformer.wte.reset_parameters()
1754
+ if hasattr(self.transformer.wte, "new_embedding"):
1755
+ nn.init.normal_(self.transformer.wte.new_embedding, std=self.config.new_embedding_init_range)
1756
+
1757
+ if hasattr(self.transformer, "wpe"):
1758
+ nn.init.normal_(self.transformer.wpe, mean=0.0, std=1.0)
1759
+
1760
+ self.transformer.ln_f.reset_parameters() # type: ignore
1761
+
1762
+ if hasattr(self.transformer, "ff_out"):
1763
+ nn.init.normal_(self.transformer.ff_out, mean=0.0, std=0.02)
1764
+
1765
+ if self.config.block_group_size == 1:
1766
+ for block in self.transformer.blocks:
1767
+ block.reset_parameters()
1768
+ else:
1769
+ for block_group in self.transformer.block_groups:
1770
+ block_group.reset_parameters()
1771
+
1772
+ def forward(
1773
+ self,
1774
+ input_ids: torch.LongTensor,
1775
+ input_embeddings: Optional[torch.FloatTensor] = None,
1776
+ attention_mask: Optional[torch.Tensor] = None,
1777
+ attention_bias: Optional[torch.Tensor] = None,
1778
+ response_mask: Optional[torch.Tensor] = None,
1779
+ images: Optional[torch.Tensor] = None,
1780
+ image_masks: Optional[torch.Tensor] = None,
1781
+ image_input_idx: Optional[torch.Tensor] = None,
1782
+ subsegment_ids: Optional[torch.Tensor] = None,
1783
+ position_ids: Optional[torch.Tensor] = None,
1784
+ past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None,
1785
+ use_cache: bool = False,
1786
+ last_logits_only: bool = False,
1787
+ output_hidden_states: Optional[bool] = None,
1788
+ append_last_valid_logits: Optional[torch.Tensor] = None,
1789
+ ) -> ModelOutput:
1790
+ """
1791
+ :param input_ids: A tensor of shape `(batch_size, seq_len)`.
1792
+ :param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input
1793
+ embeddings. When provided, it is treated as the output of the input embedding layer.
1794
+ :param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates
1795
+ which input IDs are masked. A `1` value in the mask means that
1796
+ the corresponding input ID should *not* be ignored. A `0` means
1797
+ that the corresponding input ID is masked.
1798
+
1799
+ This has the same meaning as the `attention_mask` in HuggingFace's `transformers`
1800
+ library.
1801
+ :param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`,
1802
+ `(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used
1803
+ to introduce causal or other biases.
1804
+
1805
+ If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]`
1806
+ indicates that the i-th element in the sequence is allowed to attend to the j-th
1807
+ element in the sequence.
1808
+
1809
+ If the tensor is a float tensor, it will just be added to the attention
1810
+ scores before the softmax.
1811
+
1812
+ The default is causal, which corresponds to a lower-diagonal byte matrix of ones.
1813
+ :param response_mask: A tensor of shape `(batch_size, seq_len)` that indicates
1814
+ the response mask. A `1` value in the mask means that the corresponding token
1815
+ is a response token. A `0` means that the corresponding token is not
1816
+ a response token.
1817
+ :param past_key_values: Pre-computed keys and values for each attention block.
1818
+ Can be used to speed up sequential decoding. The `input_ids` which have
1819
+ their past given to this model should not be passed as `input_ids` as they have already been computed.
1820
+ :param use_cache: If `True`, return key and value tensors for each block.
1821
+ :param last_logits_only: If `True`, only compute the logits for the last token of each sequence.
1822
+ This can speed up decoding when you only care about the next token.
1823
+ """
1824
+ output_hidden_states = output_hidden_states if output_hidden_states is not None else False
1825
+
1826
+ if past_key_values:
1827
+ assert len(past_key_values) == self.config.n_layers
1828
+
1829
+ has_image = images is not None
1830
+
1831
+ assert not (has_image and input_embeddings is not None), "Cannot provide both images and input embeddings."
1832
+ assert not (has_image and past_key_values is not None), "Cached key and values should not be used with images."
1833
+
1834
+ batch_size, seq_len = input_ids.size() if input_embeddings is None else input_embeddings.size()[:2]
1835
+ if past_key_values is None:
1836
+ past_length = 0
1837
+ else:
1838
+ past_length = past_key_values[0][0].size(-2)
1839
+
1840
+ if self.config.use_position_ids and attention_mask is None:
1841
+ attention_mask = input_ids != -1
1842
+
1843
+ if subsegment_ids is not None:
1844
+ assert not use_cache, "Subsegment_ids cannot be used with cache."
1845
+ subsegment_mask = subsegment_ids.unsqueeze(2) <= subsegment_ids.unsqueeze(1)
1846
+ attention_mask = (
1847
+ subsegment_mask.to(attention_mask.dtype) *
1848
+ attention_mask.unsqueeze(2) *
1849
+ attention_mask.unsqueeze(1))
1850
+ if position_ids is None:
1851
+ raise ValueError(f"Positioned ids must be given if using subsegment_ids")
1852
+ else:
1853
+ if self.config.use_position_ids and position_ids is None:
1854
+ position_ids = torch.clamp(
1855
+ torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1,
1856
+ min=0,
1857
+ ).broadcast_to((batch_size, attention_mask.shape[-1]))
1858
+
1859
+ # Get embeddings of input.
1860
+ # shape: (batch_size, seq_len, d_model)
1861
+ if input_ids is not None:
1862
+ input_ids = input_ids * (input_ids != -1).to(input_ids.dtype)
1863
+ x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings # type: ignore
1864
+
1865
+ num_image: Optional[int] = None
1866
+ if images is not None:
1867
+ # shape: (batch_size, num_image, num_patch, d_model)
1868
+ # cls_embed: (batch_size, num_image, d_model)
1869
+ image_features, cls_embed = self.vision_backbone(images, image_masks)
1870
+ num_image, num_patch = image_features.shape[1:3]
1871
+ assert image_input_idx.shape == (batch_size, num_image, num_patch)
1872
+
1873
+ # inster the image feature into the embedding.
1874
+ image_features = image_features.view(batch_size, num_image * num_patch, -1)
1875
+ image_input_idx = image_input_idx.view(batch_size, num_image * num_patch)
1876
+
1877
+ valid = image_input_idx >= 0
1878
+ batch_idx = torch.arange(batch_size, device=x.device)
1879
+ batch_idx = torch.tile(batch_idx[:, None], [1, image_features.shape[1]])
1880
+
1881
+ # For hf demo/endpoint
1882
+ image_features = image_features.to(x.device)
1883
+
1884
+ x[batch_idx[valid], image_input_idx[valid]] += image_features[valid]
1885
+
1886
+ if not self.config.rope:
1887
+ # Get positional embeddings.
1888
+ # shape: (1, seq_len)
1889
+ pos = torch.arange(past_length, past_length + seq_len, dtype=torch.long, device=x.device).unsqueeze(0)
1890
+ # shape: (1, seq_len, d_model)
1891
+ pos_emb = self.transformer.wpe(pos) # type: ignore
1892
+ x = pos_emb + x
1893
+
1894
+ # Add input + positional embeddings and apply dropout.
1895
+ # shape: (batch_size, seq_len, d_model)
1896
+ x = self.transformer.emb_drop(x) # type: ignore
1897
+
1898
+ # normalized
1899
+ if self.config.normalize_input_embeds:
1900
+ x = x * (self.config.d_model ** 0.5)
1901
+
1902
+ # Transform the attention mask into what the blocks expect.
1903
+ if attention_mask is not None:
1904
+ # shape: (batch_size, 1, 1, seq_len)
1905
+ if len(attention_mask.shape) == 2:
1906
+ attention_mask = attention_mask[:, :past_length + seq_len]
1907
+ attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :]
1908
+ else:
1909
+ attention_mask = attention_mask.unsqueeze(1).to(dtype=torch.float)
1910
+ attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min
1911
+
1912
+ # Merge attention mask with attention bias.
1913
+ if (
1914
+ attention_bias is not None
1915
+ or attention_mask is not None
1916
+ # NOTE (epwalsh): we need to initialize the attn bias in order for attn to work properly
1917
+ # with key+value cache. Otherwise `F.scaled_dot_product_attention()` doesn't seem to compute
1918
+ # scores correctly.
1919
+ or past_key_values is not None
1920
+ ):
1921
+ if attention_bias is None:
1922
+ attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device)
1923
+ elif attention_bias.dtype in (torch.int8, torch.bool):
1924
+ attention_bias = attention_bias.to(dtype=torch.float)
1925
+ attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min)
1926
+
1927
+ # Transform to the right shape and data type.
1928
+ mask_len = seq_len
1929
+ if attention_mask is not None:
1930
+ mask_len = attention_mask.shape[-1]
1931
+ elif past_key_values is not None:
1932
+ mask_len = past_key_values[0][0].shape[-2] + seq_len
1933
+ attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float)
1934
+
1935
+ # Add in the masking bias.
1936
+ if attention_mask is not None:
1937
+ attention_bias = attention_bias + attention_mask
1938
+ # Might get -infs after adding attention mask, since dtype.min + dtype.min = -inf.
1939
+ # `F.scaled_dot_product_attention()` doesn't handle -inf like you'd expect, instead
1940
+ # it can produce NaNs.
1941
+ ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False)
1942
+
1943
+ attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
1944
+
1945
+ # decoder layers
1946
+ all_hidden_states = []
1947
+
1948
+ # Apply blocks one-by-one.
1949
+ if self.config.block_group_size == 1:
1950
+ for block_idx, block in enumerate(self.transformer.blocks):
1951
+ if output_hidden_states:
1952
+ # add hidden states
1953
+ all_hidden_states.append(x)
1954
+
1955
+ layer_past = None if past_key_values is None else past_key_values[block_idx]
1956
+ x, cache = block(x, attention_bias=attention_bias, position_ids=position_ids, layer_past=layer_past, use_cache=use_cache)
1957
+
1958
+ if attn_key_values is not None:
1959
+ assert cache is not None
1960
+ attn_key_values.append(cache)
1961
+ else:
1962
+ for group_idx, block_group in enumerate(self.transformer.block_groups):
1963
+ if output_hidden_states:
1964
+ # add hidden states
1965
+ all_hidden_states.append(x)
1966
+
1967
+ layers_past = (
1968
+ None
1969
+ if past_key_values is None
1970
+ else past_key_values[
1971
+ group_idx * self.config.block_group_size : (group_idx + 1) * self.config.block_group_size
1972
+ ]
1973
+ )
1974
+ x, cache = block_group(
1975
+ x, attention_bias=attention_bias, position_ids=position_ids, layers_past=layers_past, use_cache=use_cache
1976
+ )
1977
+ if attn_key_values is not None:
1978
+ assert cache is not None
1979
+ attn_key_values.extend(cache)
1980
+
1981
+ if last_logits_only:
1982
+ # shape: (batch_size, 1, d_model)
1983
+ if append_last_valid_logits is not None:
1984
+ last_valid_output = x[
1985
+ torch.arange(x.shape[0], device=x.device), append_last_valid_logits.to(x.device)]
1986
+ x = last_valid_output.unsqueeze(1)
1987
+ else:
1988
+ x = x[:, -1, :].unsqueeze(1)
1989
+
1990
+ # Apply final layer norm.
1991
+ # shape: (batch_size, seq_len or 1, d_model)
1992
+ x = self.transformer.ln_f(x) # type: ignore
1993
+ if output_hidden_states:
1994
+ # add final hidden state post-final-layernorm, following HuggingFace's convention
1995
+ all_hidden_states.append(x)
1996
+
1997
+ # Get logits.
1998
+ # shape: (batch_size, seq_len or 1, vocab_size)
1999
+ if self.config.weight_tying:
2000
+ logits = F.linear(x, self.transformer.wte.weight, None) # type: ignore
2001
+ else:
2002
+ logits = self.transformer.ff_out(x) # type: ignore
2003
+ if self.config.scale_logits:
2004
+ logits.mul_(1 / math.sqrt(self.config.d_model))
2005
+
2006
+ if not last_logits_only and append_last_valid_logits is not None:
2007
+ last_valid_logit = logits[
2008
+ torch.arange(logits.shape[0], device=logits.device), append_last_valid_logits]
2009
+ logits = torch.cat([logits[:, :-1], last_valid_logit[:, None]], dim=1)
2010
+
2011
+ return ModelOutput(logits=logits, attn_key_values=attn_key_values, hidden_states=tuple(all_hidden_states) if output_hidden_states else None) # type: ignore[arg-type]
2012
+
2013
+
2014
+ class MolmoForCausalLM(PreTrainedModel):
2015
+ config_class = MolmoConfig
2016
+ base_model_prefix = "model"
2017
+ _no_split_modules = ["MolmoBlock"]
2018
+
2019
+ def __init__(self, config: MolmoConfig, model: Optional[Molmo] = None, init_params: bool = False):
2020
+ super().__init__(config)
2021
+
2022
+ if not model:
2023
+ full_config = FullMolmoConfig(
2024
+ image_padding_embed="pad_and_partial_pad",
2025
+ image_pooling_2d="attention-meanq",
2026
+ attention_layer_norm=config.attention_layer_norm,
2027
+ rope_impl="llama",
2028
+ vocab_size=config.vocab_size,
2029
+ max_sequence_length=config.max_position_embeddings,
2030
+ qkv_bias=config.qkv_bias,
2031
+ norm_after=config.norm_after,
2032
+ embedding_size=config.embedding_size,
2033
+ attention_type="sdpa",
2034
+ embedding_dropout=0,
2035
+ attention_dropout=0,
2036
+ residual_dropout=0,
2037
+ rope=True,
2038
+ weight_tying=False,
2039
+ include_bias=False,
2040
+ d_model=config.hidden_size,
2041
+ mlp_hidden_size=config.intermediate_size,
2042
+ n_layers=config.num_hidden_layers,
2043
+ additional_vocab_size=128,
2044
+ n_heads=config.num_attention_heads,
2045
+ n_kv_heads=config.num_key_value_heads,
2046
+ rope_theta=config.rope_theta,
2047
+ layer_norm_eps=config.layer_norm_eps,
2048
+ layer_norm_type=config.layer_norm_type,
2049
+ vit_layers=[-2, -9],
2050
+ vision_backbone=VisionBackboneConfig(
2051
+ image_default_input_size=(336, 336),
2052
+ image_patch_size=14,
2053
+ image_pos_patch_size=14,
2054
+ image_emb_dim=1024,
2055
+ image_num_heads=16,
2056
+ image_num_key_value_heads=16,
2057
+ image_num_layers=23,
2058
+ image_head_dim=64,
2059
+ image_mlp_dim=4096,
2060
+ image_mlp_activations="quick_gelu",
2061
+ image_dropout_rate=0.0,
2062
+ image_num_pos=577,
2063
+ image_norm_eps=1e-5,
2064
+ attention_dropout=0.0,
2065
+ residual_dropout=0.0,
2066
+ initializer_range=0.02,
2067
+ )
2068
+ )
2069
+ self.model = Molmo(full_config, init_params=init_params)
2070
+ else:
2071
+ self.model = model
2072
+
2073
+ def forward(
2074
+ self,
2075
+ input_ids: torch.LongTensor = None,
2076
+ inputs_embeds: Optional[torch.FloatTensor] = None,
2077
+ attention_mask: Optional[torch.Tensor] = None,
2078
+ attention_bias: Optional[torch.Tensor] = None,
2079
+ response_mask: Optional[torch.Tensor] = None,
2080
+ images: Optional[torch.Tensor] = None,
2081
+ image_masks: Optional[torch.Tensor] = None,
2082
+ image_input_idx: Optional[torch.Tensor] = None,
2083
+ subsegment_ids: Optional[torch.Tensor] = None,
2084
+ position_ids: Optional[torch.Tensor] = None,
2085
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
2086
+ labels: Optional[torch.LongTensor] = None,
2087
+ loss_masks: Optional[torch.Tensor] = None,
2088
+ use_cache: Optional[bool] = None,
2089
+ last_logits_only: Optional[bool] = None,
2090
+ output_attentions: Optional[bool] = None,
2091
+ output_hidden_states: Optional[bool] = None,
2092
+ append_last_valid_logits: Optional[torch.Tensor] = None,
2093
+ return_dict: Optional[bool] = None,
2094
+ cache_position: Optional[
2095
+ Cache
2096
+ ] = None, # This is a hack mitigation of an issue in transformers `4.39.x` https://github.com/huggingface/transformers/issues/29426
2097
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
2098
+ if use_cache is None:
2099
+ use_cache = self.config.use_cache
2100
+
2101
+ if output_attentions:
2102
+ raise ValueError("output_attentions is not yet supported in Molmo")
2103
+
2104
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
2105
+
2106
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
2107
+ outputs = self.model.forward(
2108
+ input_ids=input_ids,
2109
+ input_embeddings=inputs_embeds,
2110
+ attention_mask=attention_mask,
2111
+ attention_bias=attention_bias,
2112
+ response_mask=response_mask,
2113
+ images=images,
2114
+ image_masks=image_masks,
2115
+ image_input_idx=image_input_idx,
2116
+ subsegment_ids=subsegment_ids,
2117
+ position_ids=position_ids,
2118
+ past_key_values=past_key_values,
2119
+ use_cache=use_cache,
2120
+ last_logits_only=last_logits_only,
2121
+ output_hidden_states=output_hidden_states,
2122
+ append_last_valid_logits=append_last_valid_logits,
2123
+ )
2124
+
2125
+ logits = outputs.logits
2126
+ hidden_states = outputs.hidden_states
2127
+
2128
+ loss = None
2129
+ if labels is not None:
2130
+ if loss_masks is not None:
2131
+ loss_masks = loss_masks * (loss_masks > 0)
2132
+ batch_size_in_tokens = max(loss_masks.sum().item(), 1)
2133
+ labels = labels.long()
2134
+ labels.masked_fill_(~(loss_masks > 0), -100)
2135
+ labels = labels.view(-1)
2136
+ logits_for_loss = logits.to(torch.float32).view(-1, logits.size(-1))
2137
+ loss_fct = torch.nn.CrossEntropyLoss(ignore_index=-100, reduction='none')
2138
+ loss = loss_fct(logits_for_loss, labels)
2139
+ loss = loss.view(input_ids.shape[0], -1)
2140
+ loss = loss * loss_masks
2141
+ loss = loss.sum() / batch_size_in_tokens
2142
+ use_zloss = getattr(self.config, "softmax_auxiliary_loss", False)
2143
+ if use_zloss:
2144
+ z_squared = logits_for_loss.logsumexp(-1).pow(2)
2145
+ z_loss = self.config.softmax_auxiliary_loss_scale * z_squared
2146
+ z_loss = z_loss.view(input_ids.shape[0], -1)
2147
+ z_loss = z_loss * loss_masks
2148
+ z_loss = z_loss.sum() / batch_size_in_tokens
2149
+ loss += z_loss
2150
+ else:
2151
+ # Shift so that tokens < n predict n
2152
+ shift_logits = logits[..., :-1, :].contiguous()
2153
+ shift_labels = labels[..., 1:].contiguous()
2154
+ # Flatten the tokens
2155
+ loss_fct = torch.nn.CrossEntropyLoss()
2156
+ shift_logits = shift_logits.view(-1, self.config.embedding_size)
2157
+ shift_labels = shift_labels.view(-1)
2158
+ # Enable model parallelism
2159
+ shift_labels = shift_labels.to(shift_logits.device)
2160
+ loss = loss_fct(shift_logits, shift_labels)
2161
+
2162
+ if not return_dict:
2163
+ output = (logits,) + outputs[1:]
2164
+ return (loss,) + output if loss is not None else output
2165
+
2166
+ return CausalLMOutputWithPast(
2167
+ loss=loss,
2168
+ logits=logits,
2169
+ past_key_values=outputs.attn_key_values,
2170
+ hidden_states=hidden_states,
2171
+ )
2172
+
2173
+ def can_generate(self) -> bool:
2174
+ return True
2175
+
2176
+ @torch.no_grad()
2177
+ def generate_from_batch(
2178
+ self,
2179
+ batch: Dict[str, Any],
2180
+ generation_config: Optional[GenerationConfig] = None,
2181
+ **kwargs,
2182
+ ):
2183
+ if generation_config is not None:
2184
+ assert generation_config.use_cache
2185
+
2186
+ images = batch.get("images")
2187
+ image_masks = batch.get("image_masks")
2188
+ image_input_idx = batch.get("image_input_idx")
2189
+
2190
+ # Validate inputs.
2191
+ input_ids = batch["input_ids"]
2192
+ batch_size, seq_len = input_ids.shape
2193
+ attention_mask = batch.get("attention_mask", None)
2194
+ max_new_tokens = generation_config.max_new_tokens
2195
+ assert max_new_tokens is not None
2196
+ mask_len = seq_len + max_new_tokens if self.config.use_position_ids else seq_len
2197
+ position_ids: Optional[torch.Tensor] = None
2198
+ append_last_valid_logits: Optional[torch.Tensor] = None
2199
+ if self.config.use_position_ids and attention_mask is None:
2200
+ attention_mask = input_ids != -1
2201
+ position_ids = torch.clamp(
2202
+ torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1,
2203
+ min=0
2204
+ )
2205
+ append_last_valid_logits = attention_mask.long().sum(dim=-1) - 1
2206
+ attention_mask = torch.cat(
2207
+ [attention_mask, attention_mask.new_ones((batch_size, max_new_tokens))],
2208
+ dim=1,
2209
+ )
2210
+ if attention_mask is not None:
2211
+ assert attention_mask.shape == (batch_size, mask_len)
2212
+
2213
+ out = super().generate(
2214
+ batch["input_ids"],
2215
+ generation_config,
2216
+ attention_mask=attention_mask,
2217
+ images=images,
2218
+ image_masks=image_masks,
2219
+ image_input_idx=image_input_idx,
2220
+ position_ids=position_ids,
2221
+ append_last_valid_logits=append_last_valid_logits,
2222
+ **kwargs,
2223
+ )
2224
+
2225
+ return out
2226
+
2227
+ def prepare_inputs_for_generation(
2228
+ self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
2229
+ ):
2230
+ if past_key_values:
2231
+ # This is because we want the model to only process the last generated token.
2232
+ input_ids = input_ids[:, -1:]
2233
+
2234
+ if self.config.use_position_ids:
2235
+ attention_mask = kwargs.get("attention_mask")
2236
+ images = kwargs.get("images")
2237
+ image_masks = kwargs.get("image_masks")
2238
+ image_input_idx = kwargs.get("image_input_idx")
2239
+ position_ids = kwargs.get("position_ids")
2240
+ append_last_valid_logits = kwargs.get("append_last_valid_logits")
2241
+ model_inputs = {
2242
+ "input_ids": input_ids,
2243
+ "attention_mask": attention_mask,
2244
+ "position_ids": position_ids,
2245
+ "past_key_values": past_key_values,
2246
+ "use_cache": True,
2247
+ "last_logits_only": True,
2248
+ }
2249
+ if past_key_values is None:
2250
+ model_inputs["images"] = images
2251
+ model_inputs["image_masks"] = image_masks
2252
+ model_inputs["image_input_idx"] = image_input_idx
2253
+ model_inputs["append_last_valid_logits"] = append_last_valid_logits
2254
+ else:
2255
+ model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}
2256
+
2257
+ model_inputs.update(kwargs)
2258
+ model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
2259
+ return model_inputs
2260
+
2261
+ def _update_model_kwargs_for_generation(
2262
+ self,
2263
+ outputs: ModelOutput,
2264
+ model_kwargs: Dict[str, Any],
2265
+ is_encoder_decoder: bool = False,
2266
+ num_new_tokens: int = 1,
2267
+ ) -> Dict[str, Any]:
2268
+ if self.config.use_position_ids:
2269
+ model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
2270
+ if "append_last_valid_logits" in model_kwargs:
2271
+ del model_kwargs["append_last_valid_logits"]
2272
+ if "images" in model_kwargs:
2273
+ del model_kwargs["images"]
2274
+ del model_kwargs["image_masks"]
2275
+ del model_kwargs["image_input_idx"]
2276
+ cache_name, cache = super()._extract_past_from_model_output(outputs)
2277
+ model_kwargs[cache_name] = cache
2278
+ model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens
2279
+ return model_kwargs
2280
+
2281
+ def get_input_embeddings(self) -> torch.nn.Module:
2282
+ return self.model.transformer.wte
2283
+
2284
+ def set_input_embeddings(self, value: torch.nn.Module):
2285
+ self.model.transformer.wte = value
2286
+
2287
+ def get_output_embeddings(self):
2288
+ if self.config.weight_tying:
2289
+ return self.model.transformer.wte
2290
+ else:
2291
+ return self.model.transformer.ff_out
2292
+
2293
+ def set_output_embeddings(self, value: torch.nn.Module):
2294
+ if self.config.weight_tying:
2295
+ self.model.transformer.wte = value
2296
+ else:
2297
+ self.model.transformer.ff_out = value
2298
+
2299
+ def tie_weights(self):
2300
+ """
2301
+ This function is intentionally left as a no-op.
2302
+
2303
+ Weight tying is handled as follows:
2304
+ - When the model is initialized, the `ff_out` layer is conditionally defined based on the `weight_tying` configuration.
2305
+ See: `if not config.weight_tying: self.transformer.update(...)` in `olmo/model.py`.
2306
+ - When computing logits, the `wte` weights are used directly if `weight_tying` is enabled.
2307
+ See: `if self.config.weight_tying: logits = F.linear(x, self.transformer.wte.weight, None)` in the `forward` method.
2308
+
2309
+ Therefore, there is no need to explicitly tie the weights in this function.
2310
+ """
2311
+ pass
2312
+
2313
+ def resize_token_embeddings(
2314
+ self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
2315
+ ) -> torch.nn.Embedding:
2316
+ """
2317
+ Resizes input token embeddings matrix of the model if `new_num_tokens != config.embedding_size`.
2318
+
2319
+ Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
2320
+
2321
+ Arguments:
2322
+ new_num_tokens (`int`, *optional*):
2323
+ The new number of tokens in the embedding matrix. Increasing the size will add newly initialized
2324
+ vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
2325
+ returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
2326
+ pad_to_multiple_of (`int`, *optional*):
2327
+ If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
2328
+ `None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
2329
+
2330
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
2331
+ `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
2332
+ details about this, or help on choosing the correct value for resizing, refer to this guide:
2333
+ https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
2334
+
2335
+ Return:
2336
+ `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
2337
+
2338
+ Note:
2339
+ This method differs from the base class implementation by resizing the `embedding_size` attribute of the
2340
+ model configuration instead of the `vocab_size`. It also includes a warning if the resized `embedding_size`
2341
+ is less than the `vocab_size`. In OLMo, `embedding_size` refers to the dimensionality of the model's token
2342
+ embeddings, while `vocab_size` refers to the number of unique tokens in the vocabulary.
2343
+ """
2344
+ model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
2345
+ if new_num_tokens is None and pad_to_multiple_of is None:
2346
+ return model_embeds
2347
+
2348
+ # Update base model and current model config
2349
+ self.config.embedding_size = model_embeds.weight.shape[0]
2350
+ self.model.config.embedding_size = model_embeds.weight.shape[0]
2351
+
2352
+ # Check if the embedding size is less than the vocab size
2353
+ if self.config.embedding_size < self.config.vocab_size:
2354
+ warning_message = (
2355
+ f"Resizing token embeddings to size {self.config.embedding_size}, which is less than the vocab size "
2356
+ f"{self.config.vocab_size} defined in the model configuration. Make sure your tokenizer's vocabulary "
2357
+ "size is less than or equal to the new token embedding size."
2358
+ )
2359
+ log.warning(warning_message)
2360
+
2361
+ # Tie weights again if needed
2362
+ self.tie_weights()
2363
+
2364
+ return model_embeds
2365
+
2366
+
2367
+ # Always register for multi-modal features
2368
+ AutoModelForCausalLM.register(MolmoConfig, MolmoForCausalLM)
preprocessing_molmo.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Processor class for Molmo.
3
+ """
4
+
5
+ from typing import Optional
6
+
7
+ import PIL
8
+ from PIL import ImageOps
9
+ from PIL.Image import Image
10
+
11
+ try:
12
+ from typing import Unpack
13
+ except ImportError:
14
+ from typing_extensions import Unpack
15
+
16
+ import numpy as np
17
+ import torch
18
+
19
+ from transformers.image_utils import ImageInput
20
+ from transformers.processing_utils import (
21
+ TextKwargs,
22
+ ProcessingKwargs,
23
+ ProcessorMixin,
24
+ )
25
+
26
+ from transformers.tokenization_utils_base import TextInput
27
+ from transformers.utils import logging
28
+
29
+ from transformers import AutoTokenizer
30
+ from .image_preprocessing_molmo import MolmoImagesKwargs, MolmoImageProcessor
31
+
32
+
33
+ logger = logging.get_logger(__name__)
34
+
35
+
36
+ DEFAULT_IMAGE_PATCH_TOKEN = f"<im_patch>"
37
+ DEFAULT_IM_START_TOKEN = f"<im_start>"
38
+ DEFAULT_IM_END_TOKEN = f"<im_end>"
39
+ DEFAULT_IM_COL_TOKEN = f"<im_col>"
40
+ IMAGE_PROMPT = "<|image|>"
41
+
42
+ EXTRA_TOKENS = (DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_COL_TOKEN, IMAGE_PROMPT)
43
+
44
+
45
+ def get_special_token_ids(tokenizer):
46
+ ids = tokenizer.encode("".join(EXTRA_TOKENS), add_special_tokens=False)
47
+ assert len(ids) == len(EXTRA_TOKENS)
48
+ return {k: i for k, i in zip(EXTRA_TOKENS, ids)}
49
+
50
+
51
+ class MolmoTextKwargs(TextKwargs, total=False):
52
+ style: Optional[str]
53
+ system_prompt: Optional[str]
54
+ message_format: Optional[str]
55
+ always_start_with_space: Optional[bool]
56
+ sequence_length: Optional[int]
57
+
58
+
59
+ class MolmoProcessorKwargs(ProcessingKwargs, total=False):
60
+ text_kwargs: MolmoTextKwargs
61
+ images_kwargs: MolmoImagesKwargs
62
+ _defaults = {
63
+ "images_kwargs": {
64
+ "max_crops": 12,
65
+ "overlap_margins": [4, 4],
66
+ "base_image_input_size": [336, 336],
67
+ "image_token_length_w": 12,
68
+ "image_token_length_h": 12,
69
+ "image_patch_size": 14,
70
+ "image_padding_mask": True,
71
+ },
72
+ "text_kwargs": {
73
+ "style": "long_caption",
74
+ "system_prompt": "none",
75
+ "message_format": "role",
76
+ "always_start_with_space": True,
77
+ "sequence_length": 1536,
78
+ "padding": False,
79
+ },
80
+ }
81
+
82
+
83
+ class MolmoProcessor(ProcessorMixin):
84
+ attributes = ["image_processor", "tokenizer"]
85
+ image_processor_class = "AutoImageProcessor"
86
+ tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
87
+
88
+ def __init__(self, image_processor: MolmoImageProcessor = None, tokenizer : AutoTokenizer = None, **kwargs):
89
+ # self.image_processor = image_processor
90
+ # self.tokenizer = tokenizer
91
+ super().__init__(image_processor, tokenizer)
92
+ self._special_tokens = None
93
+
94
+ @property
95
+ def special_token_ids(self):
96
+ if self._special_tokens is None:
97
+ self._special_tokens = get_special_token_ids(self.tokenizer)
98
+ return self._special_tokens
99
+
100
+ def get_tokens_input(self, prompt, message_format, always_start_with_space):
101
+ if message_format == "none" or message_format is None:
102
+ pass
103
+ elif message_format == "role":
104
+ prompt = "User: " + prompt + " Assistant:"
105
+ else:
106
+ raise NotImplementedError(f"Message format {message_format} not implemented")
107
+
108
+ if always_start_with_space:
109
+ prompt = " " + prompt
110
+
111
+ tokens = self.tokenizer.encode(prompt, add_special_tokens=False)
112
+
113
+ return tokens
114
+
115
+ def process(
116
+ self,
117
+ text: TextInput = None,
118
+ images: ImageInput = None,
119
+ **kwargs: Unpack[MolmoProcessorKwargs],
120
+ ):
121
+ output_kwargs = self._merge_kwargs(
122
+ MolmoProcessorKwargs,
123
+ tokenizer_init_kwargs=self.tokenizer.init_kwargs,
124
+ **kwargs,
125
+ )
126
+
127
+ tokens = self.get_tokens_input(
128
+ text,
129
+ output_kwargs["text_kwargs"]["message_format"],
130
+ output_kwargs["text_kwargs"]["always_start_with_space"],
131
+ )
132
+
133
+ image_token_id = self.special_token_ids[IMAGE_PROMPT]
134
+
135
+ if images is not None:
136
+ if not isinstance(images, (list, tuple)):
137
+ images = [images]
138
+ image_arrays = []
139
+ for image in images:
140
+ if isinstance(image, Image):
141
+ image = image.convert("RGB")
142
+ # Handle images with EXIF orientation tags, which PIL will ignore by default
143
+ # https://github.com/python-pillow/Pillow/issues/4703
144
+ img = ImageOps.exif_transpose(image)
145
+ image_arrays.append(np.array(image))
146
+ else:
147
+ assert len(image.shape) == 3 and image.shape[-1] == 3
148
+ image_arrays.append(image.astype(np.uint8))
149
+ images = image_arrays
150
+ # For now only support inserting images at the start
151
+ image_idx = [-1]*len(images)
152
+ else:
153
+ image_idx = None
154
+
155
+ sequence_length = output_kwargs["text_kwargs"]["sequence_length"]
156
+
157
+ image_patch_token_id = self.special_token_ids[DEFAULT_IMAGE_PATCH_TOKEN]
158
+ image_col_token_id = self.special_token_ids[DEFAULT_IM_COL_TOKEN]
159
+ image_start_token_id = self.special_token_ids[DEFAULT_IM_START_TOKEN]
160
+ image_end_token_id = self.special_token_ids[DEFAULT_IM_END_TOKEN]
161
+ out = self.image_processor.multimodal_preprocess(
162
+ images=images,
163
+ image_idx=image_idx,
164
+ tokens=np.asarray(tokens).astype(np.int32),
165
+ sequence_length=sequence_length,
166
+ image_patch_token_id=image_patch_token_id,
167
+ image_col_token_id=image_col_token_id,
168
+ image_start_token_id=image_start_token_id,
169
+ image_end_token_id=image_end_token_id,
170
+ **output_kwargs["images_kwargs"]
171
+ )
172
+
173
+ # Prepend BOS
174
+ # qwen2 and olmo do not have a BOS, and instead use EOS as a generic seperator token.
175
+ bos = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
176
+ decoder_input_tokens = np.pad(out["input_ids"], [[1, 0]], constant_values=bos)
177
+ out["input_ids"] = decoder_input_tokens
178
+ if "image_input_idx" in out:
179
+ # Shift patch mapping up by one since we added BOS
180
+ image_input_idx = out["image_input_idx"]
181
+ out["image_input_idx"] = np.where(image_input_idx < 0, image_input_idx, image_input_idx + 1)
182
+
183
+ for k, v in out.items():
184
+ out[k] = torch.from_numpy(v)
185
+
186
+ return out
187
+
188
+
189
+ MolmoProcessor.register_for_auto_class()
preprocessor_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoImageProcessor": "image_preprocessing_molmo.MolmoImageProcessor",
4
+ "AutoProcessor": "preprocessing_molmo.MolmoProcessor"
5
+ },
6
+ "base_image_input_size": [
7
+ 336,
8
+ 336
9
+ ],
10
+ "do_normalize": true,
11
+ "image_mean": [
12
+ 0.48145466,
13
+ 0.4578275,
14
+ 0.40821073
15
+ ],
16
+ "image_padding_mask": true,
17
+ "image_patch_size": 14,
18
+ "image_processor_type": "MolmoImageProcessor",
19
+ "image_std": [
20
+ 0.26862954,
21
+ 0.26130258,
22
+ 0.27577711
23
+ ],
24
+ "image_token_length_h": 12,
25
+ "image_token_length_w": 12,
26
+ "max_crops": 12,
27
+ "overlap_margins": [
28
+ 4,
29
+ 4
30
+ ],
31
+ "processor_class": "MolmoProcessor"
32
+ }
processor_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "preprocessing_molmo.MolmoProcessor"
4
+ },
5
+ "processor_class": "MolmoProcessor"
6
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "|<EXTRA_TOKENS_0>|",
4
+ "|<EXTRA_TOKENS_1>|",
5
+ "|<EXTRA_TOKENS_2>|",
6
+ "|<EXTRA_TOKENS_3>|",
7
+ "|<EXTRA_TOKENS_4>|",
8
+ "|<EXTRA_TOKENS_5>|",
9
+ "|<EXTRA_TOKENS_6>|",
10
+ "|<EXTRA_TOKENS_7>|",
11
+ "|<EXTRA_TOKENS_8>|",
12
+ "|<EXTRA_TOKENS_9>|",
13
+ "|<EXTRA_TOKENS_10>|",
14
+ "|<EXTRA_TOKENS_11>|",
15
+ "|<EXTRA_TOKENS_12>|",
16
+ "|<EXTRA_TOKENS_13>|",
17
+ "|<EXTRA_TOKENS_14>|",
18
+ "|<EXTRA_TOKENS_15>|",
19
+ "|<EXTRA_TOKENS_16>|",
20
+ "|<EXTRA_TOKENS_17>|",
21
+ "|<EXTRA_TOKENS_18>|",
22
+ "|<EXTRA_TOKENS_19>|",
23
+ "|<EXTRA_TOKENS_20>|",
24
+ "|<EXTRA_TOKENS_21>|",
25
+ "|<EXTRA_TOKENS_22>|",
26
+ "|<EXTRA_TOKENS_23>|",
27
+ "|<EXTRA_TOKENS_24>|",
28
+ "|<EXTRA_TOKENS_25>|",
29
+ "|<EXTRA_TOKENS_26>|",
30
+ "|<EXTRA_TOKENS_27>|",
31
+ "|<EXTRA_TOKENS_28>|",
32
+ "|<EXTRA_TOKENS_29>|",
33
+ "|<EXTRA_TOKENS_30>|",
34
+ "|<EXTRA_TOKENS_31>|",
35
+ "|<EXTRA_TOKENS_32>|",
36
+ "|<EXTRA_TOKENS_33>|",
37
+ "|<EXTRA_TOKENS_34>|",
38
+ "|<EXTRA_TOKENS_35>|",
39
+ "|<EXTRA_TOKENS_36>|",
40
+ "|<EXTRA_TOKENS_37>|",
41
+ "|<EXTRA_TOKENS_38>|",
42
+ "|<EXTRA_TOKENS_39>|",
43
+ "|<EXTRA_TOKENS_40>|",
44
+ "|<EXTRA_TOKENS_41>|",
45
+ "|<EXTRA_TOKENS_42>|",
46
+ "|<EXTRA_TOKENS_43>|",
47
+ "|<EXTRA_TOKENS_44>|",
48
+ "|<EXTRA_TOKENS_45>|",
49
+ "|<EXTRA_TOKENS_46>|",
50
+ "|<EXTRA_TOKENS_47>|",
51
+ "|<EXTRA_TOKENS_48>|",
52
+ "|<EXTRA_TOKENS_49>|",
53
+ "|<EXTRA_TOKENS_50>|",
54
+ "|<EXTRA_TOKENS_51>|",
55
+ "|<EXTRA_TOKENS_52>|",
56
+ "|<EXTRA_TOKENS_53>|",
57
+ "|<EXTRA_TOKENS_54>|",
58
+ "|<EXTRA_TOKENS_55>|",
59
+ "|<EXTRA_TOKENS_56>|",
60
+ "|<EXTRA_TOKENS_57>|",
61
+ "|<EXTRA_TOKENS_58>|",
62
+ "|<EXTRA_TOKENS_59>|",
63
+ "|<EXTRA_TOKENS_60>|",
64
+ "|<EXTRA_TOKENS_61>|",
65
+ "|<EXTRA_TOKENS_62>|",
66
+ "|<EXTRA_TOKENS_63>|",
67
+ "|<EXTRA_TOKENS_64>|",
68
+ "|<EXTRA_TOKENS_65>|",
69
+ "|<EXTRA_TOKENS_66>|",
70
+ "|<EXTRA_TOKENS_67>|",
71
+ "|<EXTRA_TOKENS_68>|",
72
+ "|<EXTRA_TOKENS_69>|",
73
+ "|<EXTRA_TOKENS_70>|",
74
+ "|<EXTRA_TOKENS_71>|",
75
+ "|<EXTRA_TOKENS_72>|",
76
+ "|<EXTRA_TOKENS_73>|",
77
+ "|<EXTRA_TOKENS_74>|",
78
+ "|<EXTRA_TOKENS_75>|",
79
+ "|<EXTRA_TOKENS_76>|",
80
+ "|<EXTRA_TOKENS_77>|",
81
+ "|<EXTRA_TOKENS_78>|",
82
+ "|<EXTRA_TOKENS_79>|",
83
+ "|<EXTRA_TOKENS_80>|",
84
+ "|<EXTRA_TOKENS_81>|",
85
+ "|<EXTRA_TOKENS_82>|",
86
+ "|<EXTRA_TOKENS_83>|",
87
+ "|<EXTRA_TOKENS_84>|",
88
+ "|<EXTRA_TOKENS_85>|",
89
+ "|<EXTRA_TOKENS_86>|",
90
+ "|<EXTRA_TOKENS_87>|",
91
+ "|<EXTRA_TOKENS_88>|",
92
+ "|<EXTRA_TOKENS_89>|",
93
+ "|<EXTRA_TOKENS_90>|",
94
+ "|<EXTRA_TOKENS_91>|",
95
+ "|<EXTRA_TOKENS_92>|",
96
+ "|<EXTRA_TOKENS_93>|",
97
+ "|<EXTRA_TOKENS_94>|",
98
+ "|<EXTRA_TOKENS_95>|",
99
+ "|<EXTRA_TOKENS_96>|",
100
+ "|<EXTRA_TOKENS_97>|",
101
+ "|<EXTRA_TOKENS_98>|",
102
+ "|<EXTRA_TOKENS_99>|",
103
+ "|<EXTRA_TOKENS_100>|",
104
+ "|<EXTRA_TOKENS_101>|",
105
+ "|<EXTRA_TOKENS_102>|",
106
+ "|<EXTRA_TOKENS_103>|",
107
+ "|<EXTRA_TOKENS_104>|",
108
+ "|<EXTRA_TOKENS_105>|",
109
+ "|<EXTRA_TOKENS_106>|",
110
+ "|<EXTRA_TOKENS_107>|",
111
+ "|<EXTRA_TOKENS_108>|",
112
+ "|<EXTRA_TOKENS_109>|",
113
+ "|<EXTRA_TOKENS_110>|",
114
+ "|<EXTRA_TOKENS_111>|",
115
+ "|<EXTRA_TOKENS_112>|",
116
+ "|<EXTRA_TOKENS_113>|",
117
+ "|<EXTRA_TOKENS_114>|",
118
+ "|<EXTRA_TOKENS_115>|",
119
+ "|<EXTRA_TOKENS_116>|",
120
+ "|<EXTRA_TOKENS_117>|",
121
+ "|<EXTRA_TOKENS_118>|",
122
+ "|<EXTRA_TOKENS_119>|",
123
+ "|<EXTRA_TOKENS_120>|",
124
+ "|<EXTRA_TOKENS_121>|",
125
+ "|<EXTRA_TOKENS_122>|",
126
+ "|<EXTRA_TOKENS_123>|",
127
+ "|<EXTRA_TOKENS_124>|",
128
+ "|<EXTRA_TOKENS_125>|",
129
+ "|<EXTRA_TOKENS_126>|",
130
+ "|<EXTRA_TOKENS_127>|",
131
+ "|<EXTRA_TOKENS_128>|",
132
+ "|<EXTRA_TOKENS_129>|",
133
+ "|<EXTRA_TOKENS_130>|",
134
+ "|<EXTRA_TOKENS_131>|",
135
+ "|<EXTRA_TOKENS_132>|",
136
+ "|<EXTRA_TOKENS_133>|",
137
+ "|<EXTRA_TOKENS_134>|",
138
+ "|<EXTRA_TOKENS_135>|",
139
+ "|<EXTRA_TOKENS_136>|",
140
+ "|<EXTRA_TOKENS_137>|",
141
+ "|<EXTRA_TOKENS_138>|",
142
+ "|<EXTRA_TOKENS_139>|",
143
+ "|<EXTRA_TOKENS_140>|",
144
+ "|<EXTRA_TOKENS_141>|",
145
+ "|<EXTRA_TOKENS_142>|",
146
+ "|<EXTRA_TOKENS_143>|",
147
+ "|<EXTRA_TOKENS_144>|",
148
+ "|<EXTRA_TOKENS_145>|",
149
+ "|<EXTRA_TOKENS_146>|",
150
+ "|<EXTRA_TOKENS_147>|",
151
+ "|<EXTRA_TOKENS_148>|",
152
+ "|<EXTRA_TOKENS_149>|",
153
+ "|<EXTRA_TOKENS_150>|",
154
+ "|<EXTRA_TOKENS_151>|",
155
+ "|<EXTRA_TOKENS_152>|",
156
+ "|<EXTRA_TOKENS_153>|",
157
+ "|<EXTRA_TOKENS_154>|",
158
+ "|<EXTRA_TOKENS_155>|",
159
+ "|<EXTRA_TOKENS_156>|",
160
+ "|<EXTRA_TOKENS_157>|",
161
+ "|<EXTRA_TOKENS_158>|",
162
+ "|<EXTRA_TOKENS_159>|",
163
+ "|<EXTRA_TOKENS_160>|",
164
+ "|<EXTRA_TOKENS_161>|",
165
+ "|<EXTRA_TOKENS_162>|",
166
+ "|<EXTRA_TOKENS_163>|",
167
+ "|<EXTRA_TOKENS_164>|",
168
+ "|<EXTRA_TOKENS_165>|",
169
+ "|<EXTRA_TOKENS_166>|",
170
+ "|<EXTRA_TOKENS_167>|",
171
+ "|<EXTRA_TOKENS_168>|",
172
+ "|<EXTRA_TOKENS_169>|",
173
+ "|<EXTRA_TOKENS_170>|",
174
+ "|<EXTRA_TOKENS_171>|",
175
+ "|<EXTRA_TOKENS_172>|",
176
+ "|<EXTRA_TOKENS_173>|",
177
+ "|<EXTRA_TOKENS_174>|",
178
+ "|<EXTRA_TOKENS_175>|",
179
+ "|<EXTRA_TOKENS_176>|",
180
+ "|<EXTRA_TOKENS_177>|",
181
+ "|<EXTRA_TOKENS_178>|",
182
+ "|<EXTRA_TOKENS_179>|",
183
+ "|<EXTRA_TOKENS_180>|",
184
+ "|<EXTRA_TOKENS_181>|",
185
+ "|<EXTRA_TOKENS_182>|",
186
+ "|<EXTRA_TOKENS_183>|",
187
+ "|<EXTRA_TOKENS_184>|",
188
+ "|<EXTRA_TOKENS_185>|",
189
+ "|<EXTRA_TOKENS_186>|",
190
+ "|<EXTRA_TOKENS_187>|",
191
+ "|<EXTRA_TOKENS_188>|",
192
+ "|<EXTRA_TOKENS_189>|",
193
+ "|<EXTRA_TOKENS_190>|",
194
+ "|<EXTRA_TOKENS_191>|",
195
+ "|<EXTRA_TOKENS_192>|",
196
+ "|<EXTRA_TOKENS_193>|",
197
+ "|<EXTRA_TOKENS_194>|",
198
+ "|<EXTRA_TOKENS_195>|",
199
+ "|<EXTRA_TOKENS_196>|",
200
+ "|<EXTRA_TOKENS_197>|",
201
+ "|<EXTRA_TOKENS_198>|",
202
+ "|<EXTRA_TOKENS_199>|",
203
+ "|<EXTRA_TOKENS_200>|",
204
+ "|<EXTRA_TOKENS_201>|",
205
+ "|<EXTRA_TOKENS_202>|",
206
+ "|<EXTRA_TOKENS_203>|",
207
+ "|<EXTRA_TOKENS_204>|",
208
+ "|<EXTRA_TOKENS_205>|",
209
+ "|<EXTRA_TOKENS_206>|",
210
+ "|<EXTRA_TOKENS_207>|",
211
+ "|<EXTRA_TOKENS_208>|",
212
+ "|<EXTRA_TOKENS_209>|",
213
+ "|<EXTRA_TOKENS_210>|",
214
+ "|<EXTRA_TOKENS_211>|",
215
+ "|<EXTRA_TOKENS_212>|",
216
+ "|<EXTRA_TOKENS_213>|",
217
+ "|<EXTRA_TOKENS_214>|",
218
+ "|<EXTRA_TOKENS_215>|",
219
+ "|<EXTRA_TOKENS_216>|",
220
+ "|<EXTRA_TOKENS_217>|",
221
+ "|<EXTRA_TOKENS_218>|",
222
+ "|<EXTRA_TOKENS_219>|",
223
+ "|<EXTRA_TOKENS_220>|",
224
+ "|<EXTRA_TOKENS_221>|",
225
+ "|<EXTRA_TOKENS_222>|",
226
+ "|<EXTRA_TOKENS_223>|",
227
+ "|<EXTRA_TOKENS_224>|",
228
+ "|<EXTRA_TOKENS_225>|",
229
+ "|<EXTRA_TOKENS_226>|",
230
+ "|<EXTRA_TOKENS_227>|",
231
+ "|<EXTRA_TOKENS_228>|",
232
+ "|<EXTRA_TOKENS_229>|",
233
+ "|<EXTRA_TOKENS_230>|",
234
+ "|<EXTRA_TOKENS_231>|",
235
+ "|<EXTRA_TOKENS_232>|",
236
+ "|<EXTRA_TOKENS_233>|",
237
+ "|<EXTRA_TOKENS_234>|",
238
+ "|<EXTRA_TOKENS_235>|",
239
+ "|<EXTRA_TOKENS_236>|",
240
+ "|<EXTRA_TOKENS_237>|",
241
+ "|<EXTRA_TOKENS_238>|",
242
+ "|<EXTRA_TOKENS_239>|",
243
+ "|<EXTRA_TOKENS_240>|",
244
+ "|<EXTRA_TOKENS_241>|",
245
+ "|<EXTRA_TOKENS_242>|",
246
+ "|<EXTRA_TOKENS_243>|",
247
+ "|<EXTRA_TOKENS_244>|",
248
+ "|<EXTRA_TOKENS_245>|",
249
+ "|<EXTRA_TOKENS_246>|",
250
+ "|<EXTRA_TOKENS_247>|",
251
+ "|<EXTRA_TOKENS_248>|",
252
+ "|<EXTRA_TOKENS_249>|",
253
+ "|<EXTRA_TOKENS_250>|",
254
+ "|<EXTRA_TOKENS_251>|",
255
+ "|<EXTRA_TOKENS_252>|",
256
+ "|<EXTRA_TOKENS_253>|",
257
+ "|<EXTRA_TOKENS_254>|",
258
+ "|<EXTRA_TOKENS_255>|",
259
+ "|<EXTRA_TOKENS_256>|",
260
+ "|<EXTRA_TOKENS_257>|",
261
+ "|<EXTRA_TOKENS_258>|",
262
+ "|<EXTRA_TOKENS_259>|",
263
+ "|<EXTRA_TOKENS_260>|",
264
+ "|<EXTRA_TOKENS_261>|",
265
+ "|<EXTRA_TOKENS_262>|",
266
+ "|<EXTRA_TOKENS_263>|",
267
+ "|<EXTRA_TOKENS_264>|",
268
+ "|<EXTRA_TOKENS_265>|",
269
+ "|<EXTRA_TOKENS_266>|",
270
+ "|<EXTRA_TOKENS_267>|",
271
+ "|<EXTRA_TOKENS_268>|",
272
+ "|<EXTRA_TOKENS_269>|",
273
+ "|<EXTRA_TOKENS_270>|",
274
+ "|<EXTRA_TOKENS_271>|",
275
+ "|<EXTRA_TOKENS_272>|",
276
+ "|<EXTRA_TOKENS_273>|",
277
+ "|<EXTRA_TOKENS_274>|",
278
+ "|<EXTRA_TOKENS_275>|",
279
+ "|<EXTRA_TOKENS_276>|",
280
+ "|<EXTRA_TOKENS_277>|",
281
+ "|<EXTRA_TOKENS_278>|",
282
+ "|<EXTRA_TOKENS_279>|",
283
+ "|<EXTRA_TOKENS_280>|",
284
+ "|<EXTRA_TOKENS_281>|",
285
+ "|<EXTRA_TOKENS_282>|",
286
+ "|<EXTRA_TOKENS_283>|",
287
+ "|<EXTRA_TOKENS_284>|",
288
+ "|<EXTRA_TOKENS_285>|",
289
+ "|<EXTRA_TOKENS_286>|",
290
+ "|<EXTRA_TOKENS_287>|",
291
+ "|<EXTRA_TOKENS_288>|",
292
+ "|<EXTRA_TOKENS_289>|",
293
+ "|<EXTRA_TOKENS_290>|",
294
+ "|<EXTRA_TOKENS_291>|",
295
+ "|<EXTRA_TOKENS_292>|",
296
+ "|<EXTRA_TOKENS_293>|",
297
+ "|<EXTRA_TOKENS_294>|",
298
+ "|<EXTRA_TOKENS_295>|",
299
+ "|<EXTRA_TOKENS_296>|",
300
+ "|<EXTRA_TOKENS_297>|",
301
+ "|<EXTRA_TOKENS_298>|",
302
+ "|<EXTRA_TOKENS_299>|",
303
+ "|<EXTRA_TOKENS_300>|",
304
+ "|<EXTRA_TOKENS_301>|",
305
+ "|<EXTRA_TOKENS_302>|",
306
+ "|<EXTRA_TOKENS_303>|",
307
+ "|<EXTRA_TOKENS_304>|",
308
+ "|<EXTRA_TOKENS_305>|",
309
+ "|<EXTRA_TOKENS_306>|",
310
+ "|<EXTRA_TOKENS_307>|",
311
+ "|<EXTRA_TOKENS_308>|",
312
+ "|<EXTRA_TOKENS_309>|",
313
+ "|<EXTRA_TOKENS_310>|",
314
+ "|<EXTRA_TOKENS_311>|",
315
+ "|<EXTRA_TOKENS_312>|",
316
+ "|<EXTRA_TOKENS_313>|",
317
+ "|<EXTRA_TOKENS_314>|",
318
+ "|<EXTRA_TOKENS_315>|",
319
+ "|<EXTRA_TOKENS_316>|",
320
+ "|<EXTRA_TOKENS_317>|",
321
+ "|<EXTRA_TOKENS_318>|",
322
+ "|<EXTRA_TOKENS_319>|",
323
+ "|<EXTRA_TOKENS_320>|",
324
+ "|<EXTRA_TOKENS_321>|",
325
+ "|<EXTRA_TOKENS_322>|",
326
+ "|<EXTRA_TOKENS_323>|",
327
+ "|<EXTRA_TOKENS_324>|",
328
+ "|<EXTRA_TOKENS_325>|",
329
+ "|<EXTRA_TOKENS_326>|",
330
+ "|<EXTRA_TOKENS_327>|",
331
+ "|<EXTRA_TOKENS_328>|",
332
+ "|<EXTRA_TOKENS_329>|",
333
+ "|<EXTRA_TOKENS_330>|",
334
+ "|<EXTRA_TOKENS_331>|",
335
+ "|<EXTRA_TOKENS_332>|",
336
+ "|<EXTRA_TOKENS_333>|",
337
+ "|<EXTRA_TOKENS_334>|",
338
+ "|<EXTRA_TOKENS_335>|",
339
+ "|<EXTRA_TOKENS_336>|",
340
+ "|<EXTRA_TOKENS_337>|",
341
+ "|<EXTRA_TOKENS_338>|",
342
+ "|<EXTRA_TOKENS_339>|",
343
+ "|<EXTRA_TOKENS_340>|",
344
+ "|<EXTRA_TOKENS_341>|",
345
+ "|<EXTRA_TOKENS_342>|",
346
+ "|<EXTRA_TOKENS_343>|",
347
+ "|<EXTRA_TOKENS_344>|",
348
+ "|<EXTRA_TOKENS_345>|",
349
+ "|<EXTRA_TOKENS_346>|",
350
+ "|<EXTRA_TOKENS_347>|",
351
+ "|<EXTRA_TOKENS_348>|",
352
+ "|<EXTRA_TOKENS_349>|",
353
+ "|<EXTRA_TOKENS_350>|",
354
+ "|<EXTRA_TOKENS_351>|",
355
+ "|<EXTRA_TOKENS_352>|",
356
+ "|<EXTRA_TOKENS_353>|",
357
+ "|<EXTRA_TOKENS_354>|",
358
+ "|<EXTRA_TOKENS_355>|",
359
+ "|<EXTRA_TOKENS_356>|",
360
+ "|<EXTRA_TOKENS_357>|",
361
+ "|<EXTRA_TOKENS_358>|",
362
+ "|<EXTRA_TOKENS_359>|",
363
+ "|<EXTRA_TOKENS_360>|",
364
+ "|<EXTRA_TOKENS_361>|",
365
+ "|<EXTRA_TOKENS_362>|",
366
+ "|<EXTRA_TOKENS_363>|",
367
+ "|<EXTRA_TOKENS_364>|",
368
+ "|<EXTRA_TOKENS_365>|",
369
+ "|<EXTRA_TOKENS_366>|",
370
+ "|<EXTRA_TOKENS_367>|",
371
+ "|<EXTRA_TOKENS_368>|",
372
+ "|<EXTRA_TOKENS_369>|",
373
+ "|<EXTRA_TOKENS_370>|",
374
+ "|<EXTRA_TOKENS_371>|",
375
+ "|<EXTRA_TOKENS_372>|",
376
+ "|<EXTRA_TOKENS_373>|",
377
+ "|<EXTRA_TOKENS_374>|",
378
+ "|<EXTRA_TOKENS_375>|",
379
+ "|<EXTRA_TOKENS_376>|",
380
+ "|<EXTRA_TOKENS_377>|",
381
+ "|<EXTRA_TOKENS_378>|",
382
+ "|<EXTRA_TOKENS_379>|",
383
+ "|<EXTRA_TOKENS_380>|",
384
+ "|<EXTRA_TOKENS_381>|",
385
+ "|<EXTRA_TOKENS_382>|",
386
+ "|<EXTRA_TOKENS_383>|",
387
+ "|<EXTRA_TOKENS_384>|",
388
+ "|<EXTRA_TOKENS_385>|",
389
+ "|<EXTRA_TOKENS_386>|",
390
+ "|<EXTRA_TOKENS_387>|",
391
+ "|<EXTRA_TOKENS_388>|",
392
+ "|<EXTRA_TOKENS_389>|",
393
+ "|<EXTRA_TOKENS_390>|",
394
+ "|<EXTRA_TOKENS_391>|",
395
+ "|<EXTRA_TOKENS_392>|",
396
+ "|<EXTRA_TOKENS_393>|",
397
+ "|<EXTRA_TOKENS_394>|",
398
+ "|<EXTRA_TOKENS_395>|",
399
+ "|<EXTRA_TOKENS_396>|",
400
+ "|<EXTRA_TOKENS_397>|",
401
+ "|<EXTRA_TOKENS_398>|",
402
+ "|<EXTRA_TOKENS_399>|",
403
+ "|<EXTRA_TOKENS_400>|",
404
+ "|<EXTRA_TOKENS_401>|",
405
+ "|<EXTRA_TOKENS_402>|",
406
+ "|<EXTRA_TOKENS_403>|",
407
+ "|<EXTRA_TOKENS_404>|",
408
+ "|<EXTRA_TOKENS_405>|",
409
+ "|<EXTRA_TOKENS_406>|",
410
+ "|<EXTRA_TOKENS_407>|",
411
+ "|<EXTRA_TOKENS_408>|",
412
+ "|<EXTRA_TOKENS_409>|",
413
+ "|<EXTRA_TOKENS_410>|",
414
+ "|<EXTRA_TOKENS_411>|",
415
+ "|<EXTRA_TOKENS_412>|",
416
+ "|<EXTRA_TOKENS_413>|",
417
+ "|<EXTRA_TOKENS_414>|",
418
+ "|<EXTRA_TOKENS_415>|",
419
+ "|<EXTRA_TOKENS_416>|",
420
+ "|<EXTRA_TOKENS_417>|",
421
+ "<im_start>",
422
+ "<im_end>",
423
+ "<im_patch>",
424
+ "<im_col>",
425
+ "<|image|>"
426
+ ],
427
+ "eos_token": {
428
+ "content": "<|endoftext|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false
433
+ },
434
+ "pad_token": {
435
+ "content": "<|endoftext|>",
436
+ "lstrip": false,
437
+ "normalized": false,
438
+ "rstrip": false,
439
+ "single_word": false
440
+ }
441
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,3852 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "|<EXTRA_TOKENS_0>|",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "|<EXTRA_TOKENS_1>|",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "|<EXTRA_TOKENS_2>|",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "|<EXTRA_TOKENS_3>|",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "|<EXTRA_TOKENS_4>|",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "|<EXTRA_TOKENS_5>|",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "|<EXTRA_TOKENS_6>|",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "|<EXTRA_TOKENS_7>|",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "|<EXTRA_TOKENS_8>|",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "|<EXTRA_TOKENS_9>|",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "|<EXTRA_TOKENS_10>|",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "151657": {
117
+ "content": "|<EXTRA_TOKENS_11>|",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "151658": {
125
+ "content": "|<EXTRA_TOKENS_12>|",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "151659": {
133
+ "content": "|<EXTRA_TOKENS_13>|",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "151660": {
141
+ "content": "|<EXTRA_TOKENS_14>|",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "151661": {
149
+ "content": "|<EXTRA_TOKENS_15>|",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "151662": {
157
+ "content": "|<EXTRA_TOKENS_16>|",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "151663": {
165
+ "content": "|<EXTRA_TOKENS_17>|",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "151664": {
173
+ "content": "|<EXTRA_TOKENS_18>|",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "151665": {
181
+ "content": "|<EXTRA_TOKENS_19>|",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "151666": {
189
+ "content": "|<EXTRA_TOKENS_20>|",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": true
195
+ },
196
+ "151667": {
197
+ "content": "|<EXTRA_TOKENS_21>|",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": true
203
+ },
204
+ "151668": {
205
+ "content": "|<EXTRA_TOKENS_22>|",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": true
211
+ },
212
+ "151669": {
213
+ "content": "|<EXTRA_TOKENS_23>|",
214
+ "lstrip": false,
215
+ "normalized": false,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": true
219
+ },
220
+ "151670": {
221
+ "content": "|<EXTRA_TOKENS_24>|",
222
+ "lstrip": false,
223
+ "normalized": false,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": true
227
+ },
228
+ "151671": {
229
+ "content": "|<EXTRA_TOKENS_25>|",
230
+ "lstrip": false,
231
+ "normalized": false,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": true
235
+ },
236
+ "151672": {
237
+ "content": "|<EXTRA_TOKENS_26>|",
238
+ "lstrip": false,
239
+ "normalized": false,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": true
243
+ },
244
+ "151673": {
245
+ "content": "|<EXTRA_TOKENS_27>|",
246
+ "lstrip": false,
247
+ "normalized": false,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": true
251
+ },
252
+ "151674": {
253
+ "content": "|<EXTRA_TOKENS_28>|",
254
+ "lstrip": false,
255
+ "normalized": false,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": true
259
+ },
260
+ "151675": {
261
+ "content": "|<EXTRA_TOKENS_29>|",
262
+ "lstrip": false,
263
+ "normalized": false,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": true
267
+ },
268
+ "151676": {
269
+ "content": "|<EXTRA_TOKENS_30>|",
270
+ "lstrip": false,
271
+ "normalized": false,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": true
275
+ },
276
+ "151677": {
277
+ "content": "|<EXTRA_TOKENS_31>|",
278
+ "lstrip": false,
279
+ "normalized": false,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": true
283
+ },
284
+ "151678": {
285
+ "content": "|<EXTRA_TOKENS_32>|",
286
+ "lstrip": false,
287
+ "normalized": false,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": true
291
+ },
292
+ "151679": {
293
+ "content": "|<EXTRA_TOKENS_33>|",
294
+ "lstrip": false,
295
+ "normalized": false,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": true
299
+ },
300
+ "151680": {
301
+ "content": "|<EXTRA_TOKENS_34>|",
302
+ "lstrip": false,
303
+ "normalized": false,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": true
307
+ },
308
+ "151681": {
309
+ "content": "|<EXTRA_TOKENS_35>|",
310
+ "lstrip": false,
311
+ "normalized": false,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": true
315
+ },
316
+ "151682": {
317
+ "content": "|<EXTRA_TOKENS_36>|",
318
+ "lstrip": false,
319
+ "normalized": false,
320
+ "rstrip": false,
321
+ "single_word": false,
322
+ "special": true
323
+ },
324
+ "151683": {
325
+ "content": "|<EXTRA_TOKENS_37>|",
326
+ "lstrip": false,
327
+ "normalized": false,
328
+ "rstrip": false,
329
+ "single_word": false,
330
+ "special": true
331
+ },
332
+ "151684": {
333
+ "content": "|<EXTRA_TOKENS_38>|",
334
+ "lstrip": false,
335
+ "normalized": false,
336
+ "rstrip": false,
337
+ "single_word": false,
338
+ "special": true
339
+ },
340
+ "151685": {
341
+ "content": "|<EXTRA_TOKENS_39>|",
342
+ "lstrip": false,
343
+ "normalized": false,
344
+ "rstrip": false,
345
+ "single_word": false,
346
+ "special": true
347
+ },
348
+ "151686": {
349
+ "content": "|<EXTRA_TOKENS_40>|",
350
+ "lstrip": false,
351
+ "normalized": false,
352
+ "rstrip": false,
353
+ "single_word": false,
354
+ "special": true
355
+ },
356
+ "151687": {
357
+ "content": "|<EXTRA_TOKENS_41>|",
358
+ "lstrip": false,
359
+ "normalized": false,
360
+ "rstrip": false,
361
+ "single_word": false,
362
+ "special": true
363
+ },
364
+ "151688": {
365
+ "content": "|<EXTRA_TOKENS_42>|",
366
+ "lstrip": false,
367
+ "normalized": false,
368
+ "rstrip": false,
369
+ "single_word": false,
370
+ "special": true
371
+ },
372
+ "151689": {
373
+ "content": "|<EXTRA_TOKENS_43>|",
374
+ "lstrip": false,
375
+ "normalized": false,
376
+ "rstrip": false,
377
+ "single_word": false,
378
+ "special": true
379
+ },
380
+ "151690": {
381
+ "content": "|<EXTRA_TOKENS_44>|",
382
+ "lstrip": false,
383
+ "normalized": false,
384
+ "rstrip": false,
385
+ "single_word": false,
386
+ "special": true
387
+ },
388
+ "151691": {
389
+ "content": "|<EXTRA_TOKENS_45>|",
390
+ "lstrip": false,
391
+ "normalized": false,
392
+ "rstrip": false,
393
+ "single_word": false,
394
+ "special": true
395
+ },
396
+ "151692": {
397
+ "content": "|<EXTRA_TOKENS_46>|",
398
+ "lstrip": false,
399
+ "normalized": false,
400
+ "rstrip": false,
401
+ "single_word": false,
402
+ "special": true
403
+ },
404
+ "151693": {
405
+ "content": "|<EXTRA_TOKENS_47>|",
406
+ "lstrip": false,
407
+ "normalized": false,
408
+ "rstrip": false,
409
+ "single_word": false,
410
+ "special": true
411
+ },
412
+ "151694": {
413
+ "content": "|<EXTRA_TOKENS_48>|",
414
+ "lstrip": false,
415
+ "normalized": false,
416
+ "rstrip": false,
417
+ "single_word": false,
418
+ "special": true
419
+ },
420
+ "151695": {
421
+ "content": "|<EXTRA_TOKENS_49>|",
422
+ "lstrip": false,
423
+ "normalized": false,
424
+ "rstrip": false,
425
+ "single_word": false,
426
+ "special": true
427
+ },
428
+ "151696": {
429
+ "content": "|<EXTRA_TOKENS_50>|",
430
+ "lstrip": false,
431
+ "normalized": false,
432
+ "rstrip": false,
433
+ "single_word": false,
434
+ "special": true
435
+ },
436
+ "151697": {
437
+ "content": "|<EXTRA_TOKENS_51>|",
438
+ "lstrip": false,
439
+ "normalized": false,
440
+ "rstrip": false,
441
+ "single_word": false,
442
+ "special": true
443
+ },
444
+ "151698": {
445
+ "content": "|<EXTRA_TOKENS_52>|",
446
+ "lstrip": false,
447
+ "normalized": false,
448
+ "rstrip": false,
449
+ "single_word": false,
450
+ "special": true
451
+ },
452
+ "151699": {
453
+ "content": "|<EXTRA_TOKENS_53>|",
454
+ "lstrip": false,
455
+ "normalized": false,
456
+ "rstrip": false,
457
+ "single_word": false,
458
+ "special": true
459
+ },
460
+ "151700": {
461
+ "content": "|<EXTRA_TOKENS_54>|",
462
+ "lstrip": false,
463
+ "normalized": false,
464
+ "rstrip": false,
465
+ "single_word": false,
466
+ "special": true
467
+ },
468
+ "151701": {
469
+ "content": "|<EXTRA_TOKENS_55>|",
470
+ "lstrip": false,
471
+ "normalized": false,
472
+ "rstrip": false,
473
+ "single_word": false,
474
+ "special": true
475
+ },
476
+ "151702": {
477
+ "content": "|<EXTRA_TOKENS_56>|",
478
+ "lstrip": false,
479
+ "normalized": false,
480
+ "rstrip": false,
481
+ "single_word": false,
482
+ "special": true
483
+ },
484
+ "151703": {
485
+ "content": "|<EXTRA_TOKENS_57>|",
486
+ "lstrip": false,
487
+ "normalized": false,
488
+ "rstrip": false,
489
+ "single_word": false,
490
+ "special": true
491
+ },
492
+ "151704": {
493
+ "content": "|<EXTRA_TOKENS_58>|",
494
+ "lstrip": false,
495
+ "normalized": false,
496
+ "rstrip": false,
497
+ "single_word": false,
498
+ "special": true
499
+ },
500
+ "151705": {
501
+ "content": "|<EXTRA_TOKENS_59>|",
502
+ "lstrip": false,
503
+ "normalized": false,
504
+ "rstrip": false,
505
+ "single_word": false,
506
+ "special": true
507
+ },
508
+ "151706": {
509
+ "content": "|<EXTRA_TOKENS_60>|",
510
+ "lstrip": false,
511
+ "normalized": false,
512
+ "rstrip": false,
513
+ "single_word": false,
514
+ "special": true
515
+ },
516
+ "151707": {
517
+ "content": "|<EXTRA_TOKENS_61>|",
518
+ "lstrip": false,
519
+ "normalized": false,
520
+ "rstrip": false,
521
+ "single_word": false,
522
+ "special": true
523
+ },
524
+ "151708": {
525
+ "content": "|<EXTRA_TOKENS_62>|",
526
+ "lstrip": false,
527
+ "normalized": false,
528
+ "rstrip": false,
529
+ "single_word": false,
530
+ "special": true
531
+ },
532
+ "151709": {
533
+ "content": "|<EXTRA_TOKENS_63>|",
534
+ "lstrip": false,
535
+ "normalized": false,
536
+ "rstrip": false,
537
+ "single_word": false,
538
+ "special": true
539
+ },
540
+ "151710": {
541
+ "content": "|<EXTRA_TOKENS_64>|",
542
+ "lstrip": false,
543
+ "normalized": false,
544
+ "rstrip": false,
545
+ "single_word": false,
546
+ "special": true
547
+ },
548
+ "151711": {
549
+ "content": "|<EXTRA_TOKENS_65>|",
550
+ "lstrip": false,
551
+ "normalized": false,
552
+ "rstrip": false,
553
+ "single_word": false,
554
+ "special": true
555
+ },
556
+ "151712": {
557
+ "content": "|<EXTRA_TOKENS_66>|",
558
+ "lstrip": false,
559
+ "normalized": false,
560
+ "rstrip": false,
561
+ "single_word": false,
562
+ "special": true
563
+ },
564
+ "151713": {
565
+ "content": "|<EXTRA_TOKENS_67>|",
566
+ "lstrip": false,
567
+ "normalized": false,
568
+ "rstrip": false,
569
+ "single_word": false,
570
+ "special": true
571
+ },
572
+ "151714": {
573
+ "content": "|<EXTRA_TOKENS_68>|",
574
+ "lstrip": false,
575
+ "normalized": false,
576
+ "rstrip": false,
577
+ "single_word": false,
578
+ "special": true
579
+ },
580
+ "151715": {
581
+ "content": "|<EXTRA_TOKENS_69>|",
582
+ "lstrip": false,
583
+ "normalized": false,
584
+ "rstrip": false,
585
+ "single_word": false,
586
+ "special": true
587
+ },
588
+ "151716": {
589
+ "content": "|<EXTRA_TOKENS_70>|",
590
+ "lstrip": false,
591
+ "normalized": false,
592
+ "rstrip": false,
593
+ "single_word": false,
594
+ "special": true
595
+ },
596
+ "151717": {
597
+ "content": "|<EXTRA_TOKENS_71>|",
598
+ "lstrip": false,
599
+ "normalized": false,
600
+ "rstrip": false,
601
+ "single_word": false,
602
+ "special": true
603
+ },
604
+ "151718": {
605
+ "content": "|<EXTRA_TOKENS_72>|",
606
+ "lstrip": false,
607
+ "normalized": false,
608
+ "rstrip": false,
609
+ "single_word": false,
610
+ "special": true
611
+ },
612
+ "151719": {
613
+ "content": "|<EXTRA_TOKENS_73>|",
614
+ "lstrip": false,
615
+ "normalized": false,
616
+ "rstrip": false,
617
+ "single_word": false,
618
+ "special": true
619
+ },
620
+ "151720": {
621
+ "content": "|<EXTRA_TOKENS_74>|",
622
+ "lstrip": false,
623
+ "normalized": false,
624
+ "rstrip": false,
625
+ "single_word": false,
626
+ "special": true
627
+ },
628
+ "151721": {
629
+ "content": "|<EXTRA_TOKENS_75>|",
630
+ "lstrip": false,
631
+ "normalized": false,
632
+ "rstrip": false,
633
+ "single_word": false,
634
+ "special": true
635
+ },
636
+ "151722": {
637
+ "content": "|<EXTRA_TOKENS_76>|",
638
+ "lstrip": false,
639
+ "normalized": false,
640
+ "rstrip": false,
641
+ "single_word": false,
642
+ "special": true
643
+ },
644
+ "151723": {
645
+ "content": "|<EXTRA_TOKENS_77>|",
646
+ "lstrip": false,
647
+ "normalized": false,
648
+ "rstrip": false,
649
+ "single_word": false,
650
+ "special": true
651
+ },
652
+ "151724": {
653
+ "content": "|<EXTRA_TOKENS_78>|",
654
+ "lstrip": false,
655
+ "normalized": false,
656
+ "rstrip": false,
657
+ "single_word": false,
658
+ "special": true
659
+ },
660
+ "151725": {
661
+ "content": "|<EXTRA_TOKENS_79>|",
662
+ "lstrip": false,
663
+ "normalized": false,
664
+ "rstrip": false,
665
+ "single_word": false,
666
+ "special": true
667
+ },
668
+ "151726": {
669
+ "content": "|<EXTRA_TOKENS_80>|",
670
+ "lstrip": false,
671
+ "normalized": false,
672
+ "rstrip": false,
673
+ "single_word": false,
674
+ "special": true
675
+ },
676
+ "151727": {
677
+ "content": "|<EXTRA_TOKENS_81>|",
678
+ "lstrip": false,
679
+ "normalized": false,
680
+ "rstrip": false,
681
+ "single_word": false,
682
+ "special": true
683
+ },
684
+ "151728": {
685
+ "content": "|<EXTRA_TOKENS_82>|",
686
+ "lstrip": false,
687
+ "normalized": false,
688
+ "rstrip": false,
689
+ "single_word": false,
690
+ "special": true
691
+ },
692
+ "151729": {
693
+ "content": "|<EXTRA_TOKENS_83>|",
694
+ "lstrip": false,
695
+ "normalized": false,
696
+ "rstrip": false,
697
+ "single_word": false,
698
+ "special": true
699
+ },
700
+ "151730": {
701
+ "content": "|<EXTRA_TOKENS_84>|",
702
+ "lstrip": false,
703
+ "normalized": false,
704
+ "rstrip": false,
705
+ "single_word": false,
706
+ "special": true
707
+ },
708
+ "151731": {
709
+ "content": "|<EXTRA_TOKENS_85>|",
710
+ "lstrip": false,
711
+ "normalized": false,
712
+ "rstrip": false,
713
+ "single_word": false,
714
+ "special": true
715
+ },
716
+ "151732": {
717
+ "content": "|<EXTRA_TOKENS_86>|",
718
+ "lstrip": false,
719
+ "normalized": false,
720
+ "rstrip": false,
721
+ "single_word": false,
722
+ "special": true
723
+ },
724
+ "151733": {
725
+ "content": "|<EXTRA_TOKENS_87>|",
726
+ "lstrip": false,
727
+ "normalized": false,
728
+ "rstrip": false,
729
+ "single_word": false,
730
+ "special": true
731
+ },
732
+ "151734": {
733
+ "content": "|<EXTRA_TOKENS_88>|",
734
+ "lstrip": false,
735
+ "normalized": false,
736
+ "rstrip": false,
737
+ "single_word": false,
738
+ "special": true
739
+ },
740
+ "151735": {
741
+ "content": "|<EXTRA_TOKENS_89>|",
742
+ "lstrip": false,
743
+ "normalized": false,
744
+ "rstrip": false,
745
+ "single_word": false,
746
+ "special": true
747
+ },
748
+ "151736": {
749
+ "content": "|<EXTRA_TOKENS_90>|",
750
+ "lstrip": false,
751
+ "normalized": false,
752
+ "rstrip": false,
753
+ "single_word": false,
754
+ "special": true
755
+ },
756
+ "151737": {
757
+ "content": "|<EXTRA_TOKENS_91>|",
758
+ "lstrip": false,
759
+ "normalized": false,
760
+ "rstrip": false,
761
+ "single_word": false,
762
+ "special": true
763
+ },
764
+ "151738": {
765
+ "content": "|<EXTRA_TOKENS_92>|",
766
+ "lstrip": false,
767
+ "normalized": false,
768
+ "rstrip": false,
769
+ "single_word": false,
770
+ "special": true
771
+ },
772
+ "151739": {
773
+ "content": "|<EXTRA_TOKENS_93>|",
774
+ "lstrip": false,
775
+ "normalized": false,
776
+ "rstrip": false,
777
+ "single_word": false,
778
+ "special": true
779
+ },
780
+ "151740": {
781
+ "content": "|<EXTRA_TOKENS_94>|",
782
+ "lstrip": false,
783
+ "normalized": false,
784
+ "rstrip": false,
785
+ "single_word": false,
786
+ "special": true
787
+ },
788
+ "151741": {
789
+ "content": "|<EXTRA_TOKENS_95>|",
790
+ "lstrip": false,
791
+ "normalized": false,
792
+ "rstrip": false,
793
+ "single_word": false,
794
+ "special": true
795
+ },
796
+ "151742": {
797
+ "content": "|<EXTRA_TOKENS_96>|",
798
+ "lstrip": false,
799
+ "normalized": false,
800
+ "rstrip": false,
801
+ "single_word": false,
802
+ "special": true
803
+ },
804
+ "151743": {
805
+ "content": "|<EXTRA_TOKENS_97>|",
806
+ "lstrip": false,
807
+ "normalized": false,
808
+ "rstrip": false,
809
+ "single_word": false,
810
+ "special": true
811
+ },
812
+ "151744": {
813
+ "content": "|<EXTRA_TOKENS_98>|",
814
+ "lstrip": false,
815
+ "normalized": false,
816
+ "rstrip": false,
817
+ "single_word": false,
818
+ "special": true
819
+ },
820
+ "151745": {
821
+ "content": "|<EXTRA_TOKENS_99>|",
822
+ "lstrip": false,
823
+ "normalized": false,
824
+ "rstrip": false,
825
+ "single_word": false,
826
+ "special": true
827
+ },
828
+ "151746": {
829
+ "content": "|<EXTRA_TOKENS_100>|",
830
+ "lstrip": false,
831
+ "normalized": false,
832
+ "rstrip": false,
833
+ "single_word": false,
834
+ "special": true
835
+ },
836
+ "151747": {
837
+ "content": "|<EXTRA_TOKENS_101>|",
838
+ "lstrip": false,
839
+ "normalized": false,
840
+ "rstrip": false,
841
+ "single_word": false,
842
+ "special": true
843
+ },
844
+ "151748": {
845
+ "content": "|<EXTRA_TOKENS_102>|",
846
+ "lstrip": false,
847
+ "normalized": false,
848
+ "rstrip": false,
849
+ "single_word": false,
850
+ "special": true
851
+ },
852
+ "151749": {
853
+ "content": "|<EXTRA_TOKENS_103>|",
854
+ "lstrip": false,
855
+ "normalized": false,
856
+ "rstrip": false,
857
+ "single_word": false,
858
+ "special": true
859
+ },
860
+ "151750": {
861
+ "content": "|<EXTRA_TOKENS_104>|",
862
+ "lstrip": false,
863
+ "normalized": false,
864
+ "rstrip": false,
865
+ "single_word": false,
866
+ "special": true
867
+ },
868
+ "151751": {
869
+ "content": "|<EXTRA_TOKENS_105>|",
870
+ "lstrip": false,
871
+ "normalized": false,
872
+ "rstrip": false,
873
+ "single_word": false,
874
+ "special": true
875
+ },
876
+ "151752": {
877
+ "content": "|<EXTRA_TOKENS_106>|",
878
+ "lstrip": false,
879
+ "normalized": false,
880
+ "rstrip": false,
881
+ "single_word": false,
882
+ "special": true
883
+ },
884
+ "151753": {
885
+ "content": "|<EXTRA_TOKENS_107>|",
886
+ "lstrip": false,
887
+ "normalized": false,
888
+ "rstrip": false,
889
+ "single_word": false,
890
+ "special": true
891
+ },
892
+ "151754": {
893
+ "content": "|<EXTRA_TOKENS_108>|",
894
+ "lstrip": false,
895
+ "normalized": false,
896
+ "rstrip": false,
897
+ "single_word": false,
898
+ "special": true
899
+ },
900
+ "151755": {
901
+ "content": "|<EXTRA_TOKENS_109>|",
902
+ "lstrip": false,
903
+ "normalized": false,
904
+ "rstrip": false,
905
+ "single_word": false,
906
+ "special": true
907
+ },
908
+ "151756": {
909
+ "content": "|<EXTRA_TOKENS_110>|",
910
+ "lstrip": false,
911
+ "normalized": false,
912
+ "rstrip": false,
913
+ "single_word": false,
914
+ "special": true
915
+ },
916
+ "151757": {
917
+ "content": "|<EXTRA_TOKENS_111>|",
918
+ "lstrip": false,
919
+ "normalized": false,
920
+ "rstrip": false,
921
+ "single_word": false,
922
+ "special": true
923
+ },
924
+ "151758": {
925
+ "content": "|<EXTRA_TOKENS_112>|",
926
+ "lstrip": false,
927
+ "normalized": false,
928
+ "rstrip": false,
929
+ "single_word": false,
930
+ "special": true
931
+ },
932
+ "151759": {
933
+ "content": "|<EXTRA_TOKENS_113>|",
934
+ "lstrip": false,
935
+ "normalized": false,
936
+ "rstrip": false,
937
+ "single_word": false,
938
+ "special": true
939
+ },
940
+ "151760": {
941
+ "content": "|<EXTRA_TOKENS_114>|",
942
+ "lstrip": false,
943
+ "normalized": false,
944
+ "rstrip": false,
945
+ "single_word": false,
946
+ "special": true
947
+ },
948
+ "151761": {
949
+ "content": "|<EXTRA_TOKENS_115>|",
950
+ "lstrip": false,
951
+ "normalized": false,
952
+ "rstrip": false,
953
+ "single_word": false,
954
+ "special": true
955
+ },
956
+ "151762": {
957
+ "content": "|<EXTRA_TOKENS_116>|",
958
+ "lstrip": false,
959
+ "normalized": false,
960
+ "rstrip": false,
961
+ "single_word": false,
962
+ "special": true
963
+ },
964
+ "151763": {
965
+ "content": "|<EXTRA_TOKENS_117>|",
966
+ "lstrip": false,
967
+ "normalized": false,
968
+ "rstrip": false,
969
+ "single_word": false,
970
+ "special": true
971
+ },
972
+ "151764": {
973
+ "content": "|<EXTRA_TOKENS_118>|",
974
+ "lstrip": false,
975
+ "normalized": false,
976
+ "rstrip": false,
977
+ "single_word": false,
978
+ "special": true
979
+ },
980
+ "151765": {
981
+ "content": "|<EXTRA_TOKENS_119>|",
982
+ "lstrip": false,
983
+ "normalized": false,
984
+ "rstrip": false,
985
+ "single_word": false,
986
+ "special": true
987
+ },
988
+ "151766": {
989
+ "content": "|<EXTRA_TOKENS_120>|",
990
+ "lstrip": false,
991
+ "normalized": false,
992
+ "rstrip": false,
993
+ "single_word": false,
994
+ "special": true
995
+ },
996
+ "151767": {
997
+ "content": "|<EXTRA_TOKENS_121>|",
998
+ "lstrip": false,
999
+ "normalized": false,
1000
+ "rstrip": false,
1001
+ "single_word": false,
1002
+ "special": true
1003
+ },
1004
+ "151768": {
1005
+ "content": "|<EXTRA_TOKENS_122>|",
1006
+ "lstrip": false,
1007
+ "normalized": false,
1008
+ "rstrip": false,
1009
+ "single_word": false,
1010
+ "special": true
1011
+ },
1012
+ "151769": {
1013
+ "content": "|<EXTRA_TOKENS_123>|",
1014
+ "lstrip": false,
1015
+ "normalized": false,
1016
+ "rstrip": false,
1017
+ "single_word": false,
1018
+ "special": true
1019
+ },
1020
+ "151770": {
1021
+ "content": "|<EXTRA_TOKENS_124>|",
1022
+ "lstrip": false,
1023
+ "normalized": false,
1024
+ "rstrip": false,
1025
+ "single_word": false,
1026
+ "special": true
1027
+ },
1028
+ "151771": {
1029
+ "content": "|<EXTRA_TOKENS_125>|",
1030
+ "lstrip": false,
1031
+ "normalized": false,
1032
+ "rstrip": false,
1033
+ "single_word": false,
1034
+ "special": true
1035
+ },
1036
+ "151772": {
1037
+ "content": "|<EXTRA_TOKENS_126>|",
1038
+ "lstrip": false,
1039
+ "normalized": false,
1040
+ "rstrip": false,
1041
+ "single_word": false,
1042
+ "special": true
1043
+ },
1044
+ "151773": {
1045
+ "content": "|<EXTRA_TOKENS_127>|",
1046
+ "lstrip": false,
1047
+ "normalized": false,
1048
+ "rstrip": false,
1049
+ "single_word": false,
1050
+ "special": true
1051
+ },
1052
+ "151774": {
1053
+ "content": "|<EXTRA_TOKENS_128>|",
1054
+ "lstrip": false,
1055
+ "normalized": false,
1056
+ "rstrip": false,
1057
+ "single_word": false,
1058
+ "special": true
1059
+ },
1060
+ "151775": {
1061
+ "content": "|<EXTRA_TOKENS_129>|",
1062
+ "lstrip": false,
1063
+ "normalized": false,
1064
+ "rstrip": false,
1065
+ "single_word": false,
1066
+ "special": true
1067
+ },
1068
+ "151776": {
1069
+ "content": "|<EXTRA_TOKENS_130>|",
1070
+ "lstrip": false,
1071
+ "normalized": false,
1072
+ "rstrip": false,
1073
+ "single_word": false,
1074
+ "special": true
1075
+ },
1076
+ "151777": {
1077
+ "content": "|<EXTRA_TOKENS_131>|",
1078
+ "lstrip": false,
1079
+ "normalized": false,
1080
+ "rstrip": false,
1081
+ "single_word": false,
1082
+ "special": true
1083
+ },
1084
+ "151778": {
1085
+ "content": "|<EXTRA_TOKENS_132>|",
1086
+ "lstrip": false,
1087
+ "normalized": false,
1088
+ "rstrip": false,
1089
+ "single_word": false,
1090
+ "special": true
1091
+ },
1092
+ "151779": {
1093
+ "content": "|<EXTRA_TOKENS_133>|",
1094
+ "lstrip": false,
1095
+ "normalized": false,
1096
+ "rstrip": false,
1097
+ "single_word": false,
1098
+ "special": true
1099
+ },
1100
+ "151780": {
1101
+ "content": "|<EXTRA_TOKENS_134>|",
1102
+ "lstrip": false,
1103
+ "normalized": false,
1104
+ "rstrip": false,
1105
+ "single_word": false,
1106
+ "special": true
1107
+ },
1108
+ "151781": {
1109
+ "content": "|<EXTRA_TOKENS_135>|",
1110
+ "lstrip": false,
1111
+ "normalized": false,
1112
+ "rstrip": false,
1113
+ "single_word": false,
1114
+ "special": true
1115
+ },
1116
+ "151782": {
1117
+ "content": "|<EXTRA_TOKENS_136>|",
1118
+ "lstrip": false,
1119
+ "normalized": false,
1120
+ "rstrip": false,
1121
+ "single_word": false,
1122
+ "special": true
1123
+ },
1124
+ "151783": {
1125
+ "content": "|<EXTRA_TOKENS_137>|",
1126
+ "lstrip": false,
1127
+ "normalized": false,
1128
+ "rstrip": false,
1129
+ "single_word": false,
1130
+ "special": true
1131
+ },
1132
+ "151784": {
1133
+ "content": "|<EXTRA_TOKENS_138>|",
1134
+ "lstrip": false,
1135
+ "normalized": false,
1136
+ "rstrip": false,
1137
+ "single_word": false,
1138
+ "special": true
1139
+ },
1140
+ "151785": {
1141
+ "content": "|<EXTRA_TOKENS_139>|",
1142
+ "lstrip": false,
1143
+ "normalized": false,
1144
+ "rstrip": false,
1145
+ "single_word": false,
1146
+ "special": true
1147
+ },
1148
+ "151786": {
1149
+ "content": "|<EXTRA_TOKENS_140>|",
1150
+ "lstrip": false,
1151
+ "normalized": false,
1152
+ "rstrip": false,
1153
+ "single_word": false,
1154
+ "special": true
1155
+ },
1156
+ "151787": {
1157
+ "content": "|<EXTRA_TOKENS_141>|",
1158
+ "lstrip": false,
1159
+ "normalized": false,
1160
+ "rstrip": false,
1161
+ "single_word": false,
1162
+ "special": true
1163
+ },
1164
+ "151788": {
1165
+ "content": "|<EXTRA_TOKENS_142>|",
1166
+ "lstrip": false,
1167
+ "normalized": false,
1168
+ "rstrip": false,
1169
+ "single_word": false,
1170
+ "special": true
1171
+ },
1172
+ "151789": {
1173
+ "content": "|<EXTRA_TOKENS_143>|",
1174
+ "lstrip": false,
1175
+ "normalized": false,
1176
+ "rstrip": false,
1177
+ "single_word": false,
1178
+ "special": true
1179
+ },
1180
+ "151790": {
1181
+ "content": "|<EXTRA_TOKENS_144>|",
1182
+ "lstrip": false,
1183
+ "normalized": false,
1184
+ "rstrip": false,
1185
+ "single_word": false,
1186
+ "special": true
1187
+ },
1188
+ "151791": {
1189
+ "content": "|<EXTRA_TOKENS_145>|",
1190
+ "lstrip": false,
1191
+ "normalized": false,
1192
+ "rstrip": false,
1193
+ "single_word": false,
1194
+ "special": true
1195
+ },
1196
+ "151792": {
1197
+ "content": "|<EXTRA_TOKENS_146>|",
1198
+ "lstrip": false,
1199
+ "normalized": false,
1200
+ "rstrip": false,
1201
+ "single_word": false,
1202
+ "special": true
1203
+ },
1204
+ "151793": {
1205
+ "content": "|<EXTRA_TOKENS_147>|",
1206
+ "lstrip": false,
1207
+ "normalized": false,
1208
+ "rstrip": false,
1209
+ "single_word": false,
1210
+ "special": true
1211
+ },
1212
+ "151794": {
1213
+ "content": "|<EXTRA_TOKENS_148>|",
1214
+ "lstrip": false,
1215
+ "normalized": false,
1216
+ "rstrip": false,
1217
+ "single_word": false,
1218
+ "special": true
1219
+ },
1220
+ "151795": {
1221
+ "content": "|<EXTRA_TOKENS_149>|",
1222
+ "lstrip": false,
1223
+ "normalized": false,
1224
+ "rstrip": false,
1225
+ "single_word": false,
1226
+ "special": true
1227
+ },
1228
+ "151796": {
1229
+ "content": "|<EXTRA_TOKENS_150>|",
1230
+ "lstrip": false,
1231
+ "normalized": false,
1232
+ "rstrip": false,
1233
+ "single_word": false,
1234
+ "special": true
1235
+ },
1236
+ "151797": {
1237
+ "content": "|<EXTRA_TOKENS_151>|",
1238
+ "lstrip": false,
1239
+ "normalized": false,
1240
+ "rstrip": false,
1241
+ "single_word": false,
1242
+ "special": true
1243
+ },
1244
+ "151798": {
1245
+ "content": "|<EXTRA_TOKENS_152>|",
1246
+ "lstrip": false,
1247
+ "normalized": false,
1248
+ "rstrip": false,
1249
+ "single_word": false,
1250
+ "special": true
1251
+ },
1252
+ "151799": {
1253
+ "content": "|<EXTRA_TOKENS_153>|",
1254
+ "lstrip": false,
1255
+ "normalized": false,
1256
+ "rstrip": false,
1257
+ "single_word": false,
1258
+ "special": true
1259
+ },
1260
+ "151800": {
1261
+ "content": "|<EXTRA_TOKENS_154>|",
1262
+ "lstrip": false,
1263
+ "normalized": false,
1264
+ "rstrip": false,
1265
+ "single_word": false,
1266
+ "special": true
1267
+ },
1268
+ "151801": {
1269
+ "content": "|<EXTRA_TOKENS_155>|",
1270
+ "lstrip": false,
1271
+ "normalized": false,
1272
+ "rstrip": false,
1273
+ "single_word": false,
1274
+ "special": true
1275
+ },
1276
+ "151802": {
1277
+ "content": "|<EXTRA_TOKENS_156>|",
1278
+ "lstrip": false,
1279
+ "normalized": false,
1280
+ "rstrip": false,
1281
+ "single_word": false,
1282
+ "special": true
1283
+ },
1284
+ "151803": {
1285
+ "content": "|<EXTRA_TOKENS_157>|",
1286
+ "lstrip": false,
1287
+ "normalized": false,
1288
+ "rstrip": false,
1289
+ "single_word": false,
1290
+ "special": true
1291
+ },
1292
+ "151804": {
1293
+ "content": "|<EXTRA_TOKENS_158>|",
1294
+ "lstrip": false,
1295
+ "normalized": false,
1296
+ "rstrip": false,
1297
+ "single_word": false,
1298
+ "special": true
1299
+ },
1300
+ "151805": {
1301
+ "content": "|<EXTRA_TOKENS_159>|",
1302
+ "lstrip": false,
1303
+ "normalized": false,
1304
+ "rstrip": false,
1305
+ "single_word": false,
1306
+ "special": true
1307
+ },
1308
+ "151806": {
1309
+ "content": "|<EXTRA_TOKENS_160>|",
1310
+ "lstrip": false,
1311
+ "normalized": false,
1312
+ "rstrip": false,
1313
+ "single_word": false,
1314
+ "special": true
1315
+ },
1316
+ "151807": {
1317
+ "content": "|<EXTRA_TOKENS_161>|",
1318
+ "lstrip": false,
1319
+ "normalized": false,
1320
+ "rstrip": false,
1321
+ "single_word": false,
1322
+ "special": true
1323
+ },
1324
+ "151808": {
1325
+ "content": "|<EXTRA_TOKENS_162>|",
1326
+ "lstrip": false,
1327
+ "normalized": false,
1328
+ "rstrip": false,
1329
+ "single_word": false,
1330
+ "special": true
1331
+ },
1332
+ "151809": {
1333
+ "content": "|<EXTRA_TOKENS_163>|",
1334
+ "lstrip": false,
1335
+ "normalized": false,
1336
+ "rstrip": false,
1337
+ "single_word": false,
1338
+ "special": true
1339
+ },
1340
+ "151810": {
1341
+ "content": "|<EXTRA_TOKENS_164>|",
1342
+ "lstrip": false,
1343
+ "normalized": false,
1344
+ "rstrip": false,
1345
+ "single_word": false,
1346
+ "special": true
1347
+ },
1348
+ "151811": {
1349
+ "content": "|<EXTRA_TOKENS_165>|",
1350
+ "lstrip": false,
1351
+ "normalized": false,
1352
+ "rstrip": false,
1353
+ "single_word": false,
1354
+ "special": true
1355
+ },
1356
+ "151812": {
1357
+ "content": "|<EXTRA_TOKENS_166>|",
1358
+ "lstrip": false,
1359
+ "normalized": false,
1360
+ "rstrip": false,
1361
+ "single_word": false,
1362
+ "special": true
1363
+ },
1364
+ "151813": {
1365
+ "content": "|<EXTRA_TOKENS_167>|",
1366
+ "lstrip": false,
1367
+ "normalized": false,
1368
+ "rstrip": false,
1369
+ "single_word": false,
1370
+ "special": true
1371
+ },
1372
+ "151814": {
1373
+ "content": "|<EXTRA_TOKENS_168>|",
1374
+ "lstrip": false,
1375
+ "normalized": false,
1376
+ "rstrip": false,
1377
+ "single_word": false,
1378
+ "special": true
1379
+ },
1380
+ "151815": {
1381
+ "content": "|<EXTRA_TOKENS_169>|",
1382
+ "lstrip": false,
1383
+ "normalized": false,
1384
+ "rstrip": false,
1385
+ "single_word": false,
1386
+ "special": true
1387
+ },
1388
+ "151816": {
1389
+ "content": "|<EXTRA_TOKENS_170>|",
1390
+ "lstrip": false,
1391
+ "normalized": false,
1392
+ "rstrip": false,
1393
+ "single_word": false,
1394
+ "special": true
1395
+ },
1396
+ "151817": {
1397
+ "content": "|<EXTRA_TOKENS_171>|",
1398
+ "lstrip": false,
1399
+ "normalized": false,
1400
+ "rstrip": false,
1401
+ "single_word": false,
1402
+ "special": true
1403
+ },
1404
+ "151818": {
1405
+ "content": "|<EXTRA_TOKENS_172>|",
1406
+ "lstrip": false,
1407
+ "normalized": false,
1408
+ "rstrip": false,
1409
+ "single_word": false,
1410
+ "special": true
1411
+ },
1412
+ "151819": {
1413
+ "content": "|<EXTRA_TOKENS_173>|",
1414
+ "lstrip": false,
1415
+ "normalized": false,
1416
+ "rstrip": false,
1417
+ "single_word": false,
1418
+ "special": true
1419
+ },
1420
+ "151820": {
1421
+ "content": "|<EXTRA_TOKENS_174>|",
1422
+ "lstrip": false,
1423
+ "normalized": false,
1424
+ "rstrip": false,
1425
+ "single_word": false,
1426
+ "special": true
1427
+ },
1428
+ "151821": {
1429
+ "content": "|<EXTRA_TOKENS_175>|",
1430
+ "lstrip": false,
1431
+ "normalized": false,
1432
+ "rstrip": false,
1433
+ "single_word": false,
1434
+ "special": true
1435
+ },
1436
+ "151822": {
1437
+ "content": "|<EXTRA_TOKENS_176>|",
1438
+ "lstrip": false,
1439
+ "normalized": false,
1440
+ "rstrip": false,
1441
+ "single_word": false,
1442
+ "special": true
1443
+ },
1444
+ "151823": {
1445
+ "content": "|<EXTRA_TOKENS_177>|",
1446
+ "lstrip": false,
1447
+ "normalized": false,
1448
+ "rstrip": false,
1449
+ "single_word": false,
1450
+ "special": true
1451
+ },
1452
+ "151824": {
1453
+ "content": "|<EXTRA_TOKENS_178>|",
1454
+ "lstrip": false,
1455
+ "normalized": false,
1456
+ "rstrip": false,
1457
+ "single_word": false,
1458
+ "special": true
1459
+ },
1460
+ "151825": {
1461
+ "content": "|<EXTRA_TOKENS_179>|",
1462
+ "lstrip": false,
1463
+ "normalized": false,
1464
+ "rstrip": false,
1465
+ "single_word": false,
1466
+ "special": true
1467
+ },
1468
+ "151826": {
1469
+ "content": "|<EXTRA_TOKENS_180>|",
1470
+ "lstrip": false,
1471
+ "normalized": false,
1472
+ "rstrip": false,
1473
+ "single_word": false,
1474
+ "special": true
1475
+ },
1476
+ "151827": {
1477
+ "content": "|<EXTRA_TOKENS_181>|",
1478
+ "lstrip": false,
1479
+ "normalized": false,
1480
+ "rstrip": false,
1481
+ "single_word": false,
1482
+ "special": true
1483
+ },
1484
+ "151828": {
1485
+ "content": "|<EXTRA_TOKENS_182>|",
1486
+ "lstrip": false,
1487
+ "normalized": false,
1488
+ "rstrip": false,
1489
+ "single_word": false,
1490
+ "special": true
1491
+ },
1492
+ "151829": {
1493
+ "content": "|<EXTRA_TOKENS_183>|",
1494
+ "lstrip": false,
1495
+ "normalized": false,
1496
+ "rstrip": false,
1497
+ "single_word": false,
1498
+ "special": true
1499
+ },
1500
+ "151830": {
1501
+ "content": "|<EXTRA_TOKENS_184>|",
1502
+ "lstrip": false,
1503
+ "normalized": false,
1504
+ "rstrip": false,
1505
+ "single_word": false,
1506
+ "special": true
1507
+ },
1508
+ "151831": {
1509
+ "content": "|<EXTRA_TOKENS_185>|",
1510
+ "lstrip": false,
1511
+ "normalized": false,
1512
+ "rstrip": false,
1513
+ "single_word": false,
1514
+ "special": true
1515
+ },
1516
+ "151832": {
1517
+ "content": "|<EXTRA_TOKENS_186>|",
1518
+ "lstrip": false,
1519
+ "normalized": false,
1520
+ "rstrip": false,
1521
+ "single_word": false,
1522
+ "special": true
1523
+ },
1524
+ "151833": {
1525
+ "content": "|<EXTRA_TOKENS_187>|",
1526
+ "lstrip": false,
1527
+ "normalized": false,
1528
+ "rstrip": false,
1529
+ "single_word": false,
1530
+ "special": true
1531
+ },
1532
+ "151834": {
1533
+ "content": "|<EXTRA_TOKENS_188>|",
1534
+ "lstrip": false,
1535
+ "normalized": false,
1536
+ "rstrip": false,
1537
+ "single_word": false,
1538
+ "special": true
1539
+ },
1540
+ "151835": {
1541
+ "content": "|<EXTRA_TOKENS_189>|",
1542
+ "lstrip": false,
1543
+ "normalized": false,
1544
+ "rstrip": false,
1545
+ "single_word": false,
1546
+ "special": true
1547
+ },
1548
+ "151836": {
1549
+ "content": "|<EXTRA_TOKENS_190>|",
1550
+ "lstrip": false,
1551
+ "normalized": false,
1552
+ "rstrip": false,
1553
+ "single_word": false,
1554
+ "special": true
1555
+ },
1556
+ "151837": {
1557
+ "content": "|<EXTRA_TOKENS_191>|",
1558
+ "lstrip": false,
1559
+ "normalized": false,
1560
+ "rstrip": false,
1561
+ "single_word": false,
1562
+ "special": true
1563
+ },
1564
+ "151838": {
1565
+ "content": "|<EXTRA_TOKENS_192>|",
1566
+ "lstrip": false,
1567
+ "normalized": false,
1568
+ "rstrip": false,
1569
+ "single_word": false,
1570
+ "special": true
1571
+ },
1572
+ "151839": {
1573
+ "content": "|<EXTRA_TOKENS_193>|",
1574
+ "lstrip": false,
1575
+ "normalized": false,
1576
+ "rstrip": false,
1577
+ "single_word": false,
1578
+ "special": true
1579
+ },
1580
+ "151840": {
1581
+ "content": "|<EXTRA_TOKENS_194>|",
1582
+ "lstrip": false,
1583
+ "normalized": false,
1584
+ "rstrip": false,
1585
+ "single_word": false,
1586
+ "special": true
1587
+ },
1588
+ "151841": {
1589
+ "content": "|<EXTRA_TOKENS_195>|",
1590
+ "lstrip": false,
1591
+ "normalized": false,
1592
+ "rstrip": false,
1593
+ "single_word": false,
1594
+ "special": true
1595
+ },
1596
+ "151842": {
1597
+ "content": "|<EXTRA_TOKENS_196>|",
1598
+ "lstrip": false,
1599
+ "normalized": false,
1600
+ "rstrip": false,
1601
+ "single_word": false,
1602
+ "special": true
1603
+ },
1604
+ "151843": {
1605
+ "content": "|<EXTRA_TOKENS_197>|",
1606
+ "lstrip": false,
1607
+ "normalized": false,
1608
+ "rstrip": false,
1609
+ "single_word": false,
1610
+ "special": true
1611
+ },
1612
+ "151844": {
1613
+ "content": "|<EXTRA_TOKENS_198>|",
1614
+ "lstrip": false,
1615
+ "normalized": false,
1616
+ "rstrip": false,
1617
+ "single_word": false,
1618
+ "special": true
1619
+ },
1620
+ "151845": {
1621
+ "content": "|<EXTRA_TOKENS_199>|",
1622
+ "lstrip": false,
1623
+ "normalized": false,
1624
+ "rstrip": false,
1625
+ "single_word": false,
1626
+ "special": true
1627
+ },
1628
+ "151846": {
1629
+ "content": "|<EXTRA_TOKENS_200>|",
1630
+ "lstrip": false,
1631
+ "normalized": false,
1632
+ "rstrip": false,
1633
+ "single_word": false,
1634
+ "special": true
1635
+ },
1636
+ "151847": {
1637
+ "content": "|<EXTRA_TOKENS_201>|",
1638
+ "lstrip": false,
1639
+ "normalized": false,
1640
+ "rstrip": false,
1641
+ "single_word": false,
1642
+ "special": true
1643
+ },
1644
+ "151848": {
1645
+ "content": "|<EXTRA_TOKENS_202>|",
1646
+ "lstrip": false,
1647
+ "normalized": false,
1648
+ "rstrip": false,
1649
+ "single_word": false,
1650
+ "special": true
1651
+ },
1652
+ "151849": {
1653
+ "content": "|<EXTRA_TOKENS_203>|",
1654
+ "lstrip": false,
1655
+ "normalized": false,
1656
+ "rstrip": false,
1657
+ "single_word": false,
1658
+ "special": true
1659
+ },
1660
+ "151850": {
1661
+ "content": "|<EXTRA_TOKENS_204>|",
1662
+ "lstrip": false,
1663
+ "normalized": false,
1664
+ "rstrip": false,
1665
+ "single_word": false,
1666
+ "special": true
1667
+ },
1668
+ "151851": {
1669
+ "content": "|<EXTRA_TOKENS_205>|",
1670
+ "lstrip": false,
1671
+ "normalized": false,
1672
+ "rstrip": false,
1673
+ "single_word": false,
1674
+ "special": true
1675
+ },
1676
+ "151852": {
1677
+ "content": "|<EXTRA_TOKENS_206>|",
1678
+ "lstrip": false,
1679
+ "normalized": false,
1680
+ "rstrip": false,
1681
+ "single_word": false,
1682
+ "special": true
1683
+ },
1684
+ "151853": {
1685
+ "content": "|<EXTRA_TOKENS_207>|",
1686
+ "lstrip": false,
1687
+ "normalized": false,
1688
+ "rstrip": false,
1689
+ "single_word": false,
1690
+ "special": true
1691
+ },
1692
+ "151854": {
1693
+ "content": "|<EXTRA_TOKENS_208>|",
1694
+ "lstrip": false,
1695
+ "normalized": false,
1696
+ "rstrip": false,
1697
+ "single_word": false,
1698
+ "special": true
1699
+ },
1700
+ "151855": {
1701
+ "content": "|<EXTRA_TOKENS_209>|",
1702
+ "lstrip": false,
1703
+ "normalized": false,
1704
+ "rstrip": false,
1705
+ "single_word": false,
1706
+ "special": true
1707
+ },
1708
+ "151856": {
1709
+ "content": "|<EXTRA_TOKENS_210>|",
1710
+ "lstrip": false,
1711
+ "normalized": false,
1712
+ "rstrip": false,
1713
+ "single_word": false,
1714
+ "special": true
1715
+ },
1716
+ "151857": {
1717
+ "content": "|<EXTRA_TOKENS_211>|",
1718
+ "lstrip": false,
1719
+ "normalized": false,
1720
+ "rstrip": false,
1721
+ "single_word": false,
1722
+ "special": true
1723
+ },
1724
+ "151858": {
1725
+ "content": "|<EXTRA_TOKENS_212>|",
1726
+ "lstrip": false,
1727
+ "normalized": false,
1728
+ "rstrip": false,
1729
+ "single_word": false,
1730
+ "special": true
1731
+ },
1732
+ "151859": {
1733
+ "content": "|<EXTRA_TOKENS_213>|",
1734
+ "lstrip": false,
1735
+ "normalized": false,
1736
+ "rstrip": false,
1737
+ "single_word": false,
1738
+ "special": true
1739
+ },
1740
+ "151860": {
1741
+ "content": "|<EXTRA_TOKENS_214>|",
1742
+ "lstrip": false,
1743
+ "normalized": false,
1744
+ "rstrip": false,
1745
+ "single_word": false,
1746
+ "special": true
1747
+ },
1748
+ "151861": {
1749
+ "content": "|<EXTRA_TOKENS_215>|",
1750
+ "lstrip": false,
1751
+ "normalized": false,
1752
+ "rstrip": false,
1753
+ "single_word": false,
1754
+ "special": true
1755
+ },
1756
+ "151862": {
1757
+ "content": "|<EXTRA_TOKENS_216>|",
1758
+ "lstrip": false,
1759
+ "normalized": false,
1760
+ "rstrip": false,
1761
+ "single_word": false,
1762
+ "special": true
1763
+ },
1764
+ "151863": {
1765
+ "content": "|<EXTRA_TOKENS_217>|",
1766
+ "lstrip": false,
1767
+ "normalized": false,
1768
+ "rstrip": false,
1769
+ "single_word": false,
1770
+ "special": true
1771
+ },
1772
+ "151864": {
1773
+ "content": "|<EXTRA_TOKENS_218>|",
1774
+ "lstrip": false,
1775
+ "normalized": false,
1776
+ "rstrip": false,
1777
+ "single_word": false,
1778
+ "special": true
1779
+ },
1780
+ "151865": {
1781
+ "content": "|<EXTRA_TOKENS_219>|",
1782
+ "lstrip": false,
1783
+ "normalized": false,
1784
+ "rstrip": false,
1785
+ "single_word": false,
1786
+ "special": true
1787
+ },
1788
+ "151866": {
1789
+ "content": "|<EXTRA_TOKENS_220>|",
1790
+ "lstrip": false,
1791
+ "normalized": false,
1792
+ "rstrip": false,
1793
+ "single_word": false,
1794
+ "special": true
1795
+ },
1796
+ "151867": {
1797
+ "content": "|<EXTRA_TOKENS_221>|",
1798
+ "lstrip": false,
1799
+ "normalized": false,
1800
+ "rstrip": false,
1801
+ "single_word": false,
1802
+ "special": true
1803
+ },
1804
+ "151868": {
1805
+ "content": "|<EXTRA_TOKENS_222>|",
1806
+ "lstrip": false,
1807
+ "normalized": false,
1808
+ "rstrip": false,
1809
+ "single_word": false,
1810
+ "special": true
1811
+ },
1812
+ "151869": {
1813
+ "content": "|<EXTRA_TOKENS_223>|",
1814
+ "lstrip": false,
1815
+ "normalized": false,
1816
+ "rstrip": false,
1817
+ "single_word": false,
1818
+ "special": true
1819
+ },
1820
+ "151870": {
1821
+ "content": "|<EXTRA_TOKENS_224>|",
1822
+ "lstrip": false,
1823
+ "normalized": false,
1824
+ "rstrip": false,
1825
+ "single_word": false,
1826
+ "special": true
1827
+ },
1828
+ "151871": {
1829
+ "content": "|<EXTRA_TOKENS_225>|",
1830
+ "lstrip": false,
1831
+ "normalized": false,
1832
+ "rstrip": false,
1833
+ "single_word": false,
1834
+ "special": true
1835
+ },
1836
+ "151872": {
1837
+ "content": "|<EXTRA_TOKENS_226>|",
1838
+ "lstrip": false,
1839
+ "normalized": false,
1840
+ "rstrip": false,
1841
+ "single_word": false,
1842
+ "special": true
1843
+ },
1844
+ "151873": {
1845
+ "content": "|<EXTRA_TOKENS_227>|",
1846
+ "lstrip": false,
1847
+ "normalized": false,
1848
+ "rstrip": false,
1849
+ "single_word": false,
1850
+ "special": true
1851
+ },
1852
+ "151874": {
1853
+ "content": "|<EXTRA_TOKENS_228>|",
1854
+ "lstrip": false,
1855
+ "normalized": false,
1856
+ "rstrip": false,
1857
+ "single_word": false,
1858
+ "special": true
1859
+ },
1860
+ "151875": {
1861
+ "content": "|<EXTRA_TOKENS_229>|",
1862
+ "lstrip": false,
1863
+ "normalized": false,
1864
+ "rstrip": false,
1865
+ "single_word": false,
1866
+ "special": true
1867
+ },
1868
+ "151876": {
1869
+ "content": "|<EXTRA_TOKENS_230>|",
1870
+ "lstrip": false,
1871
+ "normalized": false,
1872
+ "rstrip": false,
1873
+ "single_word": false,
1874
+ "special": true
1875
+ },
1876
+ "151877": {
1877
+ "content": "|<EXTRA_TOKENS_231>|",
1878
+ "lstrip": false,
1879
+ "normalized": false,
1880
+ "rstrip": false,
1881
+ "single_word": false,
1882
+ "special": true
1883
+ },
1884
+ "151878": {
1885
+ "content": "|<EXTRA_TOKENS_232>|",
1886
+ "lstrip": false,
1887
+ "normalized": false,
1888
+ "rstrip": false,
1889
+ "single_word": false,
1890
+ "special": true
1891
+ },
1892
+ "151879": {
1893
+ "content": "|<EXTRA_TOKENS_233>|",
1894
+ "lstrip": false,
1895
+ "normalized": false,
1896
+ "rstrip": false,
1897
+ "single_word": false,
1898
+ "special": true
1899
+ },
1900
+ "151880": {
1901
+ "content": "|<EXTRA_TOKENS_234>|",
1902
+ "lstrip": false,
1903
+ "normalized": false,
1904
+ "rstrip": false,
1905
+ "single_word": false,
1906
+ "special": true
1907
+ },
1908
+ "151881": {
1909
+ "content": "|<EXTRA_TOKENS_235>|",
1910
+ "lstrip": false,
1911
+ "normalized": false,
1912
+ "rstrip": false,
1913
+ "single_word": false,
1914
+ "special": true
1915
+ },
1916
+ "151882": {
1917
+ "content": "|<EXTRA_TOKENS_236>|",
1918
+ "lstrip": false,
1919
+ "normalized": false,
1920
+ "rstrip": false,
1921
+ "single_word": false,
1922
+ "special": true
1923
+ },
1924
+ "151883": {
1925
+ "content": "|<EXTRA_TOKENS_237>|",
1926
+ "lstrip": false,
1927
+ "normalized": false,
1928
+ "rstrip": false,
1929
+ "single_word": false,
1930
+ "special": true
1931
+ },
1932
+ "151884": {
1933
+ "content": "|<EXTRA_TOKENS_238>|",
1934
+ "lstrip": false,
1935
+ "normalized": false,
1936
+ "rstrip": false,
1937
+ "single_word": false,
1938
+ "special": true
1939
+ },
1940
+ "151885": {
1941
+ "content": "|<EXTRA_TOKENS_239>|",
1942
+ "lstrip": false,
1943
+ "normalized": false,
1944
+ "rstrip": false,
1945
+ "single_word": false,
1946
+ "special": true
1947
+ },
1948
+ "151886": {
1949
+ "content": "|<EXTRA_TOKENS_240>|",
1950
+ "lstrip": false,
1951
+ "normalized": false,
1952
+ "rstrip": false,
1953
+ "single_word": false,
1954
+ "special": true
1955
+ },
1956
+ "151887": {
1957
+ "content": "|<EXTRA_TOKENS_241>|",
1958
+ "lstrip": false,
1959
+ "normalized": false,
1960
+ "rstrip": false,
1961
+ "single_word": false,
1962
+ "special": true
1963
+ },
1964
+ "151888": {
1965
+ "content": "|<EXTRA_TOKENS_242>|",
1966
+ "lstrip": false,
1967
+ "normalized": false,
1968
+ "rstrip": false,
1969
+ "single_word": false,
1970
+ "special": true
1971
+ },
1972
+ "151889": {
1973
+ "content": "|<EXTRA_TOKENS_243>|",
1974
+ "lstrip": false,
1975
+ "normalized": false,
1976
+ "rstrip": false,
1977
+ "single_word": false,
1978
+ "special": true
1979
+ },
1980
+ "151890": {
1981
+ "content": "|<EXTRA_TOKENS_244>|",
1982
+ "lstrip": false,
1983
+ "normalized": false,
1984
+ "rstrip": false,
1985
+ "single_word": false,
1986
+ "special": true
1987
+ },
1988
+ "151891": {
1989
+ "content": "|<EXTRA_TOKENS_245>|",
1990
+ "lstrip": false,
1991
+ "normalized": false,
1992
+ "rstrip": false,
1993
+ "single_word": false,
1994
+ "special": true
1995
+ },
1996
+ "151892": {
1997
+ "content": "|<EXTRA_TOKENS_246>|",
1998
+ "lstrip": false,
1999
+ "normalized": false,
2000
+ "rstrip": false,
2001
+ "single_word": false,
2002
+ "special": true
2003
+ },
2004
+ "151893": {
2005
+ "content": "|<EXTRA_TOKENS_247>|",
2006
+ "lstrip": false,
2007
+ "normalized": false,
2008
+ "rstrip": false,
2009
+ "single_word": false,
2010
+ "special": true
2011
+ },
2012
+ "151894": {
2013
+ "content": "|<EXTRA_TOKENS_248>|",
2014
+ "lstrip": false,
2015
+ "normalized": false,
2016
+ "rstrip": false,
2017
+ "single_word": false,
2018
+ "special": true
2019
+ },
2020
+ "151895": {
2021
+ "content": "|<EXTRA_TOKENS_249>|",
2022
+ "lstrip": false,
2023
+ "normalized": false,
2024
+ "rstrip": false,
2025
+ "single_word": false,
2026
+ "special": true
2027
+ },
2028
+ "151896": {
2029
+ "content": "|<EXTRA_TOKENS_250>|",
2030
+ "lstrip": false,
2031
+ "normalized": false,
2032
+ "rstrip": false,
2033
+ "single_word": false,
2034
+ "special": true
2035
+ },
2036
+ "151897": {
2037
+ "content": "|<EXTRA_TOKENS_251>|",
2038
+ "lstrip": false,
2039
+ "normalized": false,
2040
+ "rstrip": false,
2041
+ "single_word": false,
2042
+ "special": true
2043
+ },
2044
+ "151898": {
2045
+ "content": "|<EXTRA_TOKENS_252>|",
2046
+ "lstrip": false,
2047
+ "normalized": false,
2048
+ "rstrip": false,
2049
+ "single_word": false,
2050
+ "special": true
2051
+ },
2052
+ "151899": {
2053
+ "content": "|<EXTRA_TOKENS_253>|",
2054
+ "lstrip": false,
2055
+ "normalized": false,
2056
+ "rstrip": false,
2057
+ "single_word": false,
2058
+ "special": true
2059
+ },
2060
+ "151900": {
2061
+ "content": "|<EXTRA_TOKENS_254>|",
2062
+ "lstrip": false,
2063
+ "normalized": false,
2064
+ "rstrip": false,
2065
+ "single_word": false,
2066
+ "special": true
2067
+ },
2068
+ "151901": {
2069
+ "content": "|<EXTRA_TOKENS_255>|",
2070
+ "lstrip": false,
2071
+ "normalized": false,
2072
+ "rstrip": false,
2073
+ "single_word": false,
2074
+ "special": true
2075
+ },
2076
+ "151902": {
2077
+ "content": "|<EXTRA_TOKENS_256>|",
2078
+ "lstrip": false,
2079
+ "normalized": false,
2080
+ "rstrip": false,
2081
+ "single_word": false,
2082
+ "special": true
2083
+ },
2084
+ "151903": {
2085
+ "content": "|<EXTRA_TOKENS_257>|",
2086
+ "lstrip": false,
2087
+ "normalized": false,
2088
+ "rstrip": false,
2089
+ "single_word": false,
2090
+ "special": true
2091
+ },
2092
+ "151904": {
2093
+ "content": "|<EXTRA_TOKENS_258>|",
2094
+ "lstrip": false,
2095
+ "normalized": false,
2096
+ "rstrip": false,
2097
+ "single_word": false,
2098
+ "special": true
2099
+ },
2100
+ "151905": {
2101
+ "content": "|<EXTRA_TOKENS_259>|",
2102
+ "lstrip": false,
2103
+ "normalized": false,
2104
+ "rstrip": false,
2105
+ "single_word": false,
2106
+ "special": true
2107
+ },
2108
+ "151906": {
2109
+ "content": "|<EXTRA_TOKENS_260>|",
2110
+ "lstrip": false,
2111
+ "normalized": false,
2112
+ "rstrip": false,
2113
+ "single_word": false,
2114
+ "special": true
2115
+ },
2116
+ "151907": {
2117
+ "content": "|<EXTRA_TOKENS_261>|",
2118
+ "lstrip": false,
2119
+ "normalized": false,
2120
+ "rstrip": false,
2121
+ "single_word": false,
2122
+ "special": true
2123
+ },
2124
+ "151908": {
2125
+ "content": "|<EXTRA_TOKENS_262>|",
2126
+ "lstrip": false,
2127
+ "normalized": false,
2128
+ "rstrip": false,
2129
+ "single_word": false,
2130
+ "special": true
2131
+ },
2132
+ "151909": {
2133
+ "content": "|<EXTRA_TOKENS_263>|",
2134
+ "lstrip": false,
2135
+ "normalized": false,
2136
+ "rstrip": false,
2137
+ "single_word": false,
2138
+ "special": true
2139
+ },
2140
+ "151910": {
2141
+ "content": "|<EXTRA_TOKENS_264>|",
2142
+ "lstrip": false,
2143
+ "normalized": false,
2144
+ "rstrip": false,
2145
+ "single_word": false,
2146
+ "special": true
2147
+ },
2148
+ "151911": {
2149
+ "content": "|<EXTRA_TOKENS_265>|",
2150
+ "lstrip": false,
2151
+ "normalized": false,
2152
+ "rstrip": false,
2153
+ "single_word": false,
2154
+ "special": true
2155
+ },
2156
+ "151912": {
2157
+ "content": "|<EXTRA_TOKENS_266>|",
2158
+ "lstrip": false,
2159
+ "normalized": false,
2160
+ "rstrip": false,
2161
+ "single_word": false,
2162
+ "special": true
2163
+ },
2164
+ "151913": {
2165
+ "content": "|<EXTRA_TOKENS_267>|",
2166
+ "lstrip": false,
2167
+ "normalized": false,
2168
+ "rstrip": false,
2169
+ "single_word": false,
2170
+ "special": true
2171
+ },
2172
+ "151914": {
2173
+ "content": "|<EXTRA_TOKENS_268>|",
2174
+ "lstrip": false,
2175
+ "normalized": false,
2176
+ "rstrip": false,
2177
+ "single_word": false,
2178
+ "special": true
2179
+ },
2180
+ "151915": {
2181
+ "content": "|<EXTRA_TOKENS_269>|",
2182
+ "lstrip": false,
2183
+ "normalized": false,
2184
+ "rstrip": false,
2185
+ "single_word": false,
2186
+ "special": true
2187
+ },
2188
+ "151916": {
2189
+ "content": "|<EXTRA_TOKENS_270>|",
2190
+ "lstrip": false,
2191
+ "normalized": false,
2192
+ "rstrip": false,
2193
+ "single_word": false,
2194
+ "special": true
2195
+ },
2196
+ "151917": {
2197
+ "content": "|<EXTRA_TOKENS_271>|",
2198
+ "lstrip": false,
2199
+ "normalized": false,
2200
+ "rstrip": false,
2201
+ "single_word": false,
2202
+ "special": true
2203
+ },
2204
+ "151918": {
2205
+ "content": "|<EXTRA_TOKENS_272>|",
2206
+ "lstrip": false,
2207
+ "normalized": false,
2208
+ "rstrip": false,
2209
+ "single_word": false,
2210
+ "special": true
2211
+ },
2212
+ "151919": {
2213
+ "content": "|<EXTRA_TOKENS_273>|",
2214
+ "lstrip": false,
2215
+ "normalized": false,
2216
+ "rstrip": false,
2217
+ "single_word": false,
2218
+ "special": true
2219
+ },
2220
+ "151920": {
2221
+ "content": "|<EXTRA_TOKENS_274>|",
2222
+ "lstrip": false,
2223
+ "normalized": false,
2224
+ "rstrip": false,
2225
+ "single_word": false,
2226
+ "special": true
2227
+ },
2228
+ "151921": {
2229
+ "content": "|<EXTRA_TOKENS_275>|",
2230
+ "lstrip": false,
2231
+ "normalized": false,
2232
+ "rstrip": false,
2233
+ "single_word": false,
2234
+ "special": true
2235
+ },
2236
+ "151922": {
2237
+ "content": "|<EXTRA_TOKENS_276>|",
2238
+ "lstrip": false,
2239
+ "normalized": false,
2240
+ "rstrip": false,
2241
+ "single_word": false,
2242
+ "special": true
2243
+ },
2244
+ "151923": {
2245
+ "content": "|<EXTRA_TOKENS_277>|",
2246
+ "lstrip": false,
2247
+ "normalized": false,
2248
+ "rstrip": false,
2249
+ "single_word": false,
2250
+ "special": true
2251
+ },
2252
+ "151924": {
2253
+ "content": "|<EXTRA_TOKENS_278>|",
2254
+ "lstrip": false,
2255
+ "normalized": false,
2256
+ "rstrip": false,
2257
+ "single_word": false,
2258
+ "special": true
2259
+ },
2260
+ "151925": {
2261
+ "content": "|<EXTRA_TOKENS_279>|",
2262
+ "lstrip": false,
2263
+ "normalized": false,
2264
+ "rstrip": false,
2265
+ "single_word": false,
2266
+ "special": true
2267
+ },
2268
+ "151926": {
2269
+ "content": "|<EXTRA_TOKENS_280>|",
2270
+ "lstrip": false,
2271
+ "normalized": false,
2272
+ "rstrip": false,
2273
+ "single_word": false,
2274
+ "special": true
2275
+ },
2276
+ "151927": {
2277
+ "content": "|<EXTRA_TOKENS_281>|",
2278
+ "lstrip": false,
2279
+ "normalized": false,
2280
+ "rstrip": false,
2281
+ "single_word": false,
2282
+ "special": true
2283
+ },
2284
+ "151928": {
2285
+ "content": "|<EXTRA_TOKENS_282>|",
2286
+ "lstrip": false,
2287
+ "normalized": false,
2288
+ "rstrip": false,
2289
+ "single_word": false,
2290
+ "special": true
2291
+ },
2292
+ "151929": {
2293
+ "content": "|<EXTRA_TOKENS_283>|",
2294
+ "lstrip": false,
2295
+ "normalized": false,
2296
+ "rstrip": false,
2297
+ "single_word": false,
2298
+ "special": true
2299
+ },
2300
+ "151930": {
2301
+ "content": "|<EXTRA_TOKENS_284>|",
2302
+ "lstrip": false,
2303
+ "normalized": false,
2304
+ "rstrip": false,
2305
+ "single_word": false,
2306
+ "special": true
2307
+ },
2308
+ "151931": {
2309
+ "content": "|<EXTRA_TOKENS_285>|",
2310
+ "lstrip": false,
2311
+ "normalized": false,
2312
+ "rstrip": false,
2313
+ "single_word": false,
2314
+ "special": true
2315
+ },
2316
+ "151932": {
2317
+ "content": "|<EXTRA_TOKENS_286>|",
2318
+ "lstrip": false,
2319
+ "normalized": false,
2320
+ "rstrip": false,
2321
+ "single_word": false,
2322
+ "special": true
2323
+ },
2324
+ "151933": {
2325
+ "content": "|<EXTRA_TOKENS_287>|",
2326
+ "lstrip": false,
2327
+ "normalized": false,
2328
+ "rstrip": false,
2329
+ "single_word": false,
2330
+ "special": true
2331
+ },
2332
+ "151934": {
2333
+ "content": "|<EXTRA_TOKENS_288>|",
2334
+ "lstrip": false,
2335
+ "normalized": false,
2336
+ "rstrip": false,
2337
+ "single_word": false,
2338
+ "special": true
2339
+ },
2340
+ "151935": {
2341
+ "content": "|<EXTRA_TOKENS_289>|",
2342
+ "lstrip": false,
2343
+ "normalized": false,
2344
+ "rstrip": false,
2345
+ "single_word": false,
2346
+ "special": true
2347
+ },
2348
+ "151936": {
2349
+ "content": "|<EXTRA_TOKENS_290>|",
2350
+ "lstrip": false,
2351
+ "normalized": false,
2352
+ "rstrip": false,
2353
+ "single_word": false,
2354
+ "special": true
2355
+ },
2356
+ "151937": {
2357
+ "content": "|<EXTRA_TOKENS_291>|",
2358
+ "lstrip": false,
2359
+ "normalized": false,
2360
+ "rstrip": false,
2361
+ "single_word": false,
2362
+ "special": true
2363
+ },
2364
+ "151938": {
2365
+ "content": "|<EXTRA_TOKENS_292>|",
2366
+ "lstrip": false,
2367
+ "normalized": false,
2368
+ "rstrip": false,
2369
+ "single_word": false,
2370
+ "special": true
2371
+ },
2372
+ "151939": {
2373
+ "content": "|<EXTRA_TOKENS_293>|",
2374
+ "lstrip": false,
2375
+ "normalized": false,
2376
+ "rstrip": false,
2377
+ "single_word": false,
2378
+ "special": true
2379
+ },
2380
+ "151940": {
2381
+ "content": "|<EXTRA_TOKENS_294>|",
2382
+ "lstrip": false,
2383
+ "normalized": false,
2384
+ "rstrip": false,
2385
+ "single_word": false,
2386
+ "special": true
2387
+ },
2388
+ "151941": {
2389
+ "content": "|<EXTRA_TOKENS_295>|",
2390
+ "lstrip": false,
2391
+ "normalized": false,
2392
+ "rstrip": false,
2393
+ "single_word": false,
2394
+ "special": true
2395
+ },
2396
+ "151942": {
2397
+ "content": "|<EXTRA_TOKENS_296>|",
2398
+ "lstrip": false,
2399
+ "normalized": false,
2400
+ "rstrip": false,
2401
+ "single_word": false,
2402
+ "special": true
2403
+ },
2404
+ "151943": {
2405
+ "content": "|<EXTRA_TOKENS_297>|",
2406
+ "lstrip": false,
2407
+ "normalized": false,
2408
+ "rstrip": false,
2409
+ "single_word": false,
2410
+ "special": true
2411
+ },
2412
+ "151944": {
2413
+ "content": "|<EXTRA_TOKENS_298>|",
2414
+ "lstrip": false,
2415
+ "normalized": false,
2416
+ "rstrip": false,
2417
+ "single_word": false,
2418
+ "special": true
2419
+ },
2420
+ "151945": {
2421
+ "content": "|<EXTRA_TOKENS_299>|",
2422
+ "lstrip": false,
2423
+ "normalized": false,
2424
+ "rstrip": false,
2425
+ "single_word": false,
2426
+ "special": true
2427
+ },
2428
+ "151946": {
2429
+ "content": "|<EXTRA_TOKENS_300>|",
2430
+ "lstrip": false,
2431
+ "normalized": false,
2432
+ "rstrip": false,
2433
+ "single_word": false,
2434
+ "special": true
2435
+ },
2436
+ "151947": {
2437
+ "content": "|<EXTRA_TOKENS_301>|",
2438
+ "lstrip": false,
2439
+ "normalized": false,
2440
+ "rstrip": false,
2441
+ "single_word": false,
2442
+ "special": true
2443
+ },
2444
+ "151948": {
2445
+ "content": "|<EXTRA_TOKENS_302>|",
2446
+ "lstrip": false,
2447
+ "normalized": false,
2448
+ "rstrip": false,
2449
+ "single_word": false,
2450
+ "special": true
2451
+ },
2452
+ "151949": {
2453
+ "content": "|<EXTRA_TOKENS_303>|",
2454
+ "lstrip": false,
2455
+ "normalized": false,
2456
+ "rstrip": false,
2457
+ "single_word": false,
2458
+ "special": true
2459
+ },
2460
+ "151950": {
2461
+ "content": "|<EXTRA_TOKENS_304>|",
2462
+ "lstrip": false,
2463
+ "normalized": false,
2464
+ "rstrip": false,
2465
+ "single_word": false,
2466
+ "special": true
2467
+ },
2468
+ "151951": {
2469
+ "content": "|<EXTRA_TOKENS_305>|",
2470
+ "lstrip": false,
2471
+ "normalized": false,
2472
+ "rstrip": false,
2473
+ "single_word": false,
2474
+ "special": true
2475
+ },
2476
+ "151952": {
2477
+ "content": "|<EXTRA_TOKENS_306>|",
2478
+ "lstrip": false,
2479
+ "normalized": false,
2480
+ "rstrip": false,
2481
+ "single_word": false,
2482
+ "special": true
2483
+ },
2484
+ "151953": {
2485
+ "content": "|<EXTRA_TOKENS_307>|",
2486
+ "lstrip": false,
2487
+ "normalized": false,
2488
+ "rstrip": false,
2489
+ "single_word": false,
2490
+ "special": true
2491
+ },
2492
+ "151954": {
2493
+ "content": "|<EXTRA_TOKENS_308>|",
2494
+ "lstrip": false,
2495
+ "normalized": false,
2496
+ "rstrip": false,
2497
+ "single_word": false,
2498
+ "special": true
2499
+ },
2500
+ "151955": {
2501
+ "content": "|<EXTRA_TOKENS_309>|",
2502
+ "lstrip": false,
2503
+ "normalized": false,
2504
+ "rstrip": false,
2505
+ "single_word": false,
2506
+ "special": true
2507
+ },
2508
+ "151956": {
2509
+ "content": "|<EXTRA_TOKENS_310>|",
2510
+ "lstrip": false,
2511
+ "normalized": false,
2512
+ "rstrip": false,
2513
+ "single_word": false,
2514
+ "special": true
2515
+ },
2516
+ "151957": {
2517
+ "content": "|<EXTRA_TOKENS_311>|",
2518
+ "lstrip": false,
2519
+ "normalized": false,
2520
+ "rstrip": false,
2521
+ "single_word": false,
2522
+ "special": true
2523
+ },
2524
+ "151958": {
2525
+ "content": "|<EXTRA_TOKENS_312>|",
2526
+ "lstrip": false,
2527
+ "normalized": false,
2528
+ "rstrip": false,
2529
+ "single_word": false,
2530
+ "special": true
2531
+ },
2532
+ "151959": {
2533
+ "content": "|<EXTRA_TOKENS_313>|",
2534
+ "lstrip": false,
2535
+ "normalized": false,
2536
+ "rstrip": false,
2537
+ "single_word": false,
2538
+ "special": true
2539
+ },
2540
+ "151960": {
2541
+ "content": "|<EXTRA_TOKENS_314>|",
2542
+ "lstrip": false,
2543
+ "normalized": false,
2544
+ "rstrip": false,
2545
+ "single_word": false,
2546
+ "special": true
2547
+ },
2548
+ "151961": {
2549
+ "content": "|<EXTRA_TOKENS_315>|",
2550
+ "lstrip": false,
2551
+ "normalized": false,
2552
+ "rstrip": false,
2553
+ "single_word": false,
2554
+ "special": true
2555
+ },
2556
+ "151962": {
2557
+ "content": "|<EXTRA_TOKENS_316>|",
2558
+ "lstrip": false,
2559
+ "normalized": false,
2560
+ "rstrip": false,
2561
+ "single_word": false,
2562
+ "special": true
2563
+ },
2564
+ "151963": {
2565
+ "content": "|<EXTRA_TOKENS_317>|",
2566
+ "lstrip": false,
2567
+ "normalized": false,
2568
+ "rstrip": false,
2569
+ "single_word": false,
2570
+ "special": true
2571
+ },
2572
+ "151964": {
2573
+ "content": "|<EXTRA_TOKENS_318>|",
2574
+ "lstrip": false,
2575
+ "normalized": false,
2576
+ "rstrip": false,
2577
+ "single_word": false,
2578
+ "special": true
2579
+ },
2580
+ "151965": {
2581
+ "content": "|<EXTRA_TOKENS_319>|",
2582
+ "lstrip": false,
2583
+ "normalized": false,
2584
+ "rstrip": false,
2585
+ "single_word": false,
2586
+ "special": true
2587
+ },
2588
+ "151966": {
2589
+ "content": "|<EXTRA_TOKENS_320>|",
2590
+ "lstrip": false,
2591
+ "normalized": false,
2592
+ "rstrip": false,
2593
+ "single_word": false,
2594
+ "special": true
2595
+ },
2596
+ "151967": {
2597
+ "content": "|<EXTRA_TOKENS_321>|",
2598
+ "lstrip": false,
2599
+ "normalized": false,
2600
+ "rstrip": false,
2601
+ "single_word": false,
2602
+ "special": true
2603
+ },
2604
+ "151968": {
2605
+ "content": "|<EXTRA_TOKENS_322>|",
2606
+ "lstrip": false,
2607
+ "normalized": false,
2608
+ "rstrip": false,
2609
+ "single_word": false,
2610
+ "special": true
2611
+ },
2612
+ "151969": {
2613
+ "content": "|<EXTRA_TOKENS_323>|",
2614
+ "lstrip": false,
2615
+ "normalized": false,
2616
+ "rstrip": false,
2617
+ "single_word": false,
2618
+ "special": true
2619
+ },
2620
+ "151970": {
2621
+ "content": "|<EXTRA_TOKENS_324>|",
2622
+ "lstrip": false,
2623
+ "normalized": false,
2624
+ "rstrip": false,
2625
+ "single_word": false,
2626
+ "special": true
2627
+ },
2628
+ "151971": {
2629
+ "content": "|<EXTRA_TOKENS_325>|",
2630
+ "lstrip": false,
2631
+ "normalized": false,
2632
+ "rstrip": false,
2633
+ "single_word": false,
2634
+ "special": true
2635
+ },
2636
+ "151972": {
2637
+ "content": "|<EXTRA_TOKENS_326>|",
2638
+ "lstrip": false,
2639
+ "normalized": false,
2640
+ "rstrip": false,
2641
+ "single_word": false,
2642
+ "special": true
2643
+ },
2644
+ "151973": {
2645
+ "content": "|<EXTRA_TOKENS_327>|",
2646
+ "lstrip": false,
2647
+ "normalized": false,
2648
+ "rstrip": false,
2649
+ "single_word": false,
2650
+ "special": true
2651
+ },
2652
+ "151974": {
2653
+ "content": "|<EXTRA_TOKENS_328>|",
2654
+ "lstrip": false,
2655
+ "normalized": false,
2656
+ "rstrip": false,
2657
+ "single_word": false,
2658
+ "special": true
2659
+ },
2660
+ "151975": {
2661
+ "content": "|<EXTRA_TOKENS_329>|",
2662
+ "lstrip": false,
2663
+ "normalized": false,
2664
+ "rstrip": false,
2665
+ "single_word": false,
2666
+ "special": true
2667
+ },
2668
+ "151976": {
2669
+ "content": "|<EXTRA_TOKENS_330>|",
2670
+ "lstrip": false,
2671
+ "normalized": false,
2672
+ "rstrip": false,
2673
+ "single_word": false,
2674
+ "special": true
2675
+ },
2676
+ "151977": {
2677
+ "content": "|<EXTRA_TOKENS_331>|",
2678
+ "lstrip": false,
2679
+ "normalized": false,
2680
+ "rstrip": false,
2681
+ "single_word": false,
2682
+ "special": true
2683
+ },
2684
+ "151978": {
2685
+ "content": "|<EXTRA_TOKENS_332>|",
2686
+ "lstrip": false,
2687
+ "normalized": false,
2688
+ "rstrip": false,
2689
+ "single_word": false,
2690
+ "special": true
2691
+ },
2692
+ "151979": {
2693
+ "content": "|<EXTRA_TOKENS_333>|",
2694
+ "lstrip": false,
2695
+ "normalized": false,
2696
+ "rstrip": false,
2697
+ "single_word": false,
2698
+ "special": true
2699
+ },
2700
+ "151980": {
2701
+ "content": "|<EXTRA_TOKENS_334>|",
2702
+ "lstrip": false,
2703
+ "normalized": false,
2704
+ "rstrip": false,
2705
+ "single_word": false,
2706
+ "special": true
2707
+ },
2708
+ "151981": {
2709
+ "content": "|<EXTRA_TOKENS_335>|",
2710
+ "lstrip": false,
2711
+ "normalized": false,
2712
+ "rstrip": false,
2713
+ "single_word": false,
2714
+ "special": true
2715
+ },
2716
+ "151982": {
2717
+ "content": "|<EXTRA_TOKENS_336>|",
2718
+ "lstrip": false,
2719
+ "normalized": false,
2720
+ "rstrip": false,
2721
+ "single_word": false,
2722
+ "special": true
2723
+ },
2724
+ "151983": {
2725
+ "content": "|<EXTRA_TOKENS_337>|",
2726
+ "lstrip": false,
2727
+ "normalized": false,
2728
+ "rstrip": false,
2729
+ "single_word": false,
2730
+ "special": true
2731
+ },
2732
+ "151984": {
2733
+ "content": "|<EXTRA_TOKENS_338>|",
2734
+ "lstrip": false,
2735
+ "normalized": false,
2736
+ "rstrip": false,
2737
+ "single_word": false,
2738
+ "special": true
2739
+ },
2740
+ "151985": {
2741
+ "content": "|<EXTRA_TOKENS_339>|",
2742
+ "lstrip": false,
2743
+ "normalized": false,
2744
+ "rstrip": false,
2745
+ "single_word": false,
2746
+ "special": true
2747
+ },
2748
+ "151986": {
2749
+ "content": "|<EXTRA_TOKENS_340>|",
2750
+ "lstrip": false,
2751
+ "normalized": false,
2752
+ "rstrip": false,
2753
+ "single_word": false,
2754
+ "special": true
2755
+ },
2756
+ "151987": {
2757
+ "content": "|<EXTRA_TOKENS_341>|",
2758
+ "lstrip": false,
2759
+ "normalized": false,
2760
+ "rstrip": false,
2761
+ "single_word": false,
2762
+ "special": true
2763
+ },
2764
+ "151988": {
2765
+ "content": "|<EXTRA_TOKENS_342>|",
2766
+ "lstrip": false,
2767
+ "normalized": false,
2768
+ "rstrip": false,
2769
+ "single_word": false,
2770
+ "special": true
2771
+ },
2772
+ "151989": {
2773
+ "content": "|<EXTRA_TOKENS_343>|",
2774
+ "lstrip": false,
2775
+ "normalized": false,
2776
+ "rstrip": false,
2777
+ "single_word": false,
2778
+ "special": true
2779
+ },
2780
+ "151990": {
2781
+ "content": "|<EXTRA_TOKENS_344>|",
2782
+ "lstrip": false,
2783
+ "normalized": false,
2784
+ "rstrip": false,
2785
+ "single_word": false,
2786
+ "special": true
2787
+ },
2788
+ "151991": {
2789
+ "content": "|<EXTRA_TOKENS_345>|",
2790
+ "lstrip": false,
2791
+ "normalized": false,
2792
+ "rstrip": false,
2793
+ "single_word": false,
2794
+ "special": true
2795
+ },
2796
+ "151992": {
2797
+ "content": "|<EXTRA_TOKENS_346>|",
2798
+ "lstrip": false,
2799
+ "normalized": false,
2800
+ "rstrip": false,
2801
+ "single_word": false,
2802
+ "special": true
2803
+ },
2804
+ "151993": {
2805
+ "content": "|<EXTRA_TOKENS_347>|",
2806
+ "lstrip": false,
2807
+ "normalized": false,
2808
+ "rstrip": false,
2809
+ "single_word": false,
2810
+ "special": true
2811
+ },
2812
+ "151994": {
2813
+ "content": "|<EXTRA_TOKENS_348>|",
2814
+ "lstrip": false,
2815
+ "normalized": false,
2816
+ "rstrip": false,
2817
+ "single_word": false,
2818
+ "special": true
2819
+ },
2820
+ "151995": {
2821
+ "content": "|<EXTRA_TOKENS_349>|",
2822
+ "lstrip": false,
2823
+ "normalized": false,
2824
+ "rstrip": false,
2825
+ "single_word": false,
2826
+ "special": true
2827
+ },
2828
+ "151996": {
2829
+ "content": "|<EXTRA_TOKENS_350>|",
2830
+ "lstrip": false,
2831
+ "normalized": false,
2832
+ "rstrip": false,
2833
+ "single_word": false,
2834
+ "special": true
2835
+ },
2836
+ "151997": {
2837
+ "content": "|<EXTRA_TOKENS_351>|",
2838
+ "lstrip": false,
2839
+ "normalized": false,
2840
+ "rstrip": false,
2841
+ "single_word": false,
2842
+ "special": true
2843
+ },
2844
+ "151998": {
2845
+ "content": "|<EXTRA_TOKENS_352>|",
2846
+ "lstrip": false,
2847
+ "normalized": false,
2848
+ "rstrip": false,
2849
+ "single_word": false,
2850
+ "special": true
2851
+ },
2852
+ "151999": {
2853
+ "content": "|<EXTRA_TOKENS_353>|",
2854
+ "lstrip": false,
2855
+ "normalized": false,
2856
+ "rstrip": false,
2857
+ "single_word": false,
2858
+ "special": true
2859
+ },
2860
+ "152000": {
2861
+ "content": "|<EXTRA_TOKENS_354>|",
2862
+ "lstrip": false,
2863
+ "normalized": false,
2864
+ "rstrip": false,
2865
+ "single_word": false,
2866
+ "special": true
2867
+ },
2868
+ "152001": {
2869
+ "content": "|<EXTRA_TOKENS_355>|",
2870
+ "lstrip": false,
2871
+ "normalized": false,
2872
+ "rstrip": false,
2873
+ "single_word": false,
2874
+ "special": true
2875
+ },
2876
+ "152002": {
2877
+ "content": "|<EXTRA_TOKENS_356>|",
2878
+ "lstrip": false,
2879
+ "normalized": false,
2880
+ "rstrip": false,
2881
+ "single_word": false,
2882
+ "special": true
2883
+ },
2884
+ "152003": {
2885
+ "content": "|<EXTRA_TOKENS_357>|",
2886
+ "lstrip": false,
2887
+ "normalized": false,
2888
+ "rstrip": false,
2889
+ "single_word": false,
2890
+ "special": true
2891
+ },
2892
+ "152004": {
2893
+ "content": "|<EXTRA_TOKENS_358>|",
2894
+ "lstrip": false,
2895
+ "normalized": false,
2896
+ "rstrip": false,
2897
+ "single_word": false,
2898
+ "special": true
2899
+ },
2900
+ "152005": {
2901
+ "content": "|<EXTRA_TOKENS_359>|",
2902
+ "lstrip": false,
2903
+ "normalized": false,
2904
+ "rstrip": false,
2905
+ "single_word": false,
2906
+ "special": true
2907
+ },
2908
+ "152006": {
2909
+ "content": "|<EXTRA_TOKENS_360>|",
2910
+ "lstrip": false,
2911
+ "normalized": false,
2912
+ "rstrip": false,
2913
+ "single_word": false,
2914
+ "special": true
2915
+ },
2916
+ "152007": {
2917
+ "content": "|<EXTRA_TOKENS_361>|",
2918
+ "lstrip": false,
2919
+ "normalized": false,
2920
+ "rstrip": false,
2921
+ "single_word": false,
2922
+ "special": true
2923
+ },
2924
+ "152008": {
2925
+ "content": "|<EXTRA_TOKENS_362>|",
2926
+ "lstrip": false,
2927
+ "normalized": false,
2928
+ "rstrip": false,
2929
+ "single_word": false,
2930
+ "special": true
2931
+ },
2932
+ "152009": {
2933
+ "content": "|<EXTRA_TOKENS_363>|",
2934
+ "lstrip": false,
2935
+ "normalized": false,
2936
+ "rstrip": false,
2937
+ "single_word": false,
2938
+ "special": true
2939
+ },
2940
+ "152010": {
2941
+ "content": "|<EXTRA_TOKENS_364>|",
2942
+ "lstrip": false,
2943
+ "normalized": false,
2944
+ "rstrip": false,
2945
+ "single_word": false,
2946
+ "special": true
2947
+ },
2948
+ "152011": {
2949
+ "content": "|<EXTRA_TOKENS_365>|",
2950
+ "lstrip": false,
2951
+ "normalized": false,
2952
+ "rstrip": false,
2953
+ "single_word": false,
2954
+ "special": true
2955
+ },
2956
+ "152012": {
2957
+ "content": "|<EXTRA_TOKENS_366>|",
2958
+ "lstrip": false,
2959
+ "normalized": false,
2960
+ "rstrip": false,
2961
+ "single_word": false,
2962
+ "special": true
2963
+ },
2964
+ "152013": {
2965
+ "content": "|<EXTRA_TOKENS_367>|",
2966
+ "lstrip": false,
2967
+ "normalized": false,
2968
+ "rstrip": false,
2969
+ "single_word": false,
2970
+ "special": true
2971
+ },
2972
+ "152014": {
2973
+ "content": "|<EXTRA_TOKENS_368>|",
2974
+ "lstrip": false,
2975
+ "normalized": false,
2976
+ "rstrip": false,
2977
+ "single_word": false,
2978
+ "special": true
2979
+ },
2980
+ "152015": {
2981
+ "content": "|<EXTRA_TOKENS_369>|",
2982
+ "lstrip": false,
2983
+ "normalized": false,
2984
+ "rstrip": false,
2985
+ "single_word": false,
2986
+ "special": true
2987
+ },
2988
+ "152016": {
2989
+ "content": "|<EXTRA_TOKENS_370>|",
2990
+ "lstrip": false,
2991
+ "normalized": false,
2992
+ "rstrip": false,
2993
+ "single_word": false,
2994
+ "special": true
2995
+ },
2996
+ "152017": {
2997
+ "content": "|<EXTRA_TOKENS_371>|",
2998
+ "lstrip": false,
2999
+ "normalized": false,
3000
+ "rstrip": false,
3001
+ "single_word": false,
3002
+ "special": true
3003
+ },
3004
+ "152018": {
3005
+ "content": "|<EXTRA_TOKENS_372>|",
3006
+ "lstrip": false,
3007
+ "normalized": false,
3008
+ "rstrip": false,
3009
+ "single_word": false,
3010
+ "special": true
3011
+ },
3012
+ "152019": {
3013
+ "content": "|<EXTRA_TOKENS_373>|",
3014
+ "lstrip": false,
3015
+ "normalized": false,
3016
+ "rstrip": false,
3017
+ "single_word": false,
3018
+ "special": true
3019
+ },
3020
+ "152020": {
3021
+ "content": "|<EXTRA_TOKENS_374>|",
3022
+ "lstrip": false,
3023
+ "normalized": false,
3024
+ "rstrip": false,
3025
+ "single_word": false,
3026
+ "special": true
3027
+ },
3028
+ "152021": {
3029
+ "content": "|<EXTRA_TOKENS_375>|",
3030
+ "lstrip": false,
3031
+ "normalized": false,
3032
+ "rstrip": false,
3033
+ "single_word": false,
3034
+ "special": true
3035
+ },
3036
+ "152022": {
3037
+ "content": "|<EXTRA_TOKENS_376>|",
3038
+ "lstrip": false,
3039
+ "normalized": false,
3040
+ "rstrip": false,
3041
+ "single_word": false,
3042
+ "special": true
3043
+ },
3044
+ "152023": {
3045
+ "content": "|<EXTRA_TOKENS_377>|",
3046
+ "lstrip": false,
3047
+ "normalized": false,
3048
+ "rstrip": false,
3049
+ "single_word": false,
3050
+ "special": true
3051
+ },
3052
+ "152024": {
3053
+ "content": "|<EXTRA_TOKENS_378>|",
3054
+ "lstrip": false,
3055
+ "normalized": false,
3056
+ "rstrip": false,
3057
+ "single_word": false,
3058
+ "special": true
3059
+ },
3060
+ "152025": {
3061
+ "content": "|<EXTRA_TOKENS_379>|",
3062
+ "lstrip": false,
3063
+ "normalized": false,
3064
+ "rstrip": false,
3065
+ "single_word": false,
3066
+ "special": true
3067
+ },
3068
+ "152026": {
3069
+ "content": "|<EXTRA_TOKENS_380>|",
3070
+ "lstrip": false,
3071
+ "normalized": false,
3072
+ "rstrip": false,
3073
+ "single_word": false,
3074
+ "special": true
3075
+ },
3076
+ "152027": {
3077
+ "content": "|<EXTRA_TOKENS_381>|",
3078
+ "lstrip": false,
3079
+ "normalized": false,
3080
+ "rstrip": false,
3081
+ "single_word": false,
3082
+ "special": true
3083
+ },
3084
+ "152028": {
3085
+ "content": "|<EXTRA_TOKENS_382>|",
3086
+ "lstrip": false,
3087
+ "normalized": false,
3088
+ "rstrip": false,
3089
+ "single_word": false,
3090
+ "special": true
3091
+ },
3092
+ "152029": {
3093
+ "content": "|<EXTRA_TOKENS_383>|",
3094
+ "lstrip": false,
3095
+ "normalized": false,
3096
+ "rstrip": false,
3097
+ "single_word": false,
3098
+ "special": true
3099
+ },
3100
+ "152030": {
3101
+ "content": "|<EXTRA_TOKENS_384>|",
3102
+ "lstrip": false,
3103
+ "normalized": false,
3104
+ "rstrip": false,
3105
+ "single_word": false,
3106
+ "special": true
3107
+ },
3108
+ "152031": {
3109
+ "content": "|<EXTRA_TOKENS_385>|",
3110
+ "lstrip": false,
3111
+ "normalized": false,
3112
+ "rstrip": false,
3113
+ "single_word": false,
3114
+ "special": true
3115
+ },
3116
+ "152032": {
3117
+ "content": "|<EXTRA_TOKENS_386>|",
3118
+ "lstrip": false,
3119
+ "normalized": false,
3120
+ "rstrip": false,
3121
+ "single_word": false,
3122
+ "special": true
3123
+ },
3124
+ "152033": {
3125
+ "content": "|<EXTRA_TOKENS_387>|",
3126
+ "lstrip": false,
3127
+ "normalized": false,
3128
+ "rstrip": false,
3129
+ "single_word": false,
3130
+ "special": true
3131
+ },
3132
+ "152034": {
3133
+ "content": "|<EXTRA_TOKENS_388>|",
3134
+ "lstrip": false,
3135
+ "normalized": false,
3136
+ "rstrip": false,
3137
+ "single_word": false,
3138
+ "special": true
3139
+ },
3140
+ "152035": {
3141
+ "content": "|<EXTRA_TOKENS_389>|",
3142
+ "lstrip": false,
3143
+ "normalized": false,
3144
+ "rstrip": false,
3145
+ "single_word": false,
3146
+ "special": true
3147
+ },
3148
+ "152036": {
3149
+ "content": "|<EXTRA_TOKENS_390>|",
3150
+ "lstrip": false,
3151
+ "normalized": false,
3152
+ "rstrip": false,
3153
+ "single_word": false,
3154
+ "special": true
3155
+ },
3156
+ "152037": {
3157
+ "content": "|<EXTRA_TOKENS_391>|",
3158
+ "lstrip": false,
3159
+ "normalized": false,
3160
+ "rstrip": false,
3161
+ "single_word": false,
3162
+ "special": true
3163
+ },
3164
+ "152038": {
3165
+ "content": "|<EXTRA_TOKENS_392>|",
3166
+ "lstrip": false,
3167
+ "normalized": false,
3168
+ "rstrip": false,
3169
+ "single_word": false,
3170
+ "special": true
3171
+ },
3172
+ "152039": {
3173
+ "content": "|<EXTRA_TOKENS_393>|",
3174
+ "lstrip": false,
3175
+ "normalized": false,
3176
+ "rstrip": false,
3177
+ "single_word": false,
3178
+ "special": true
3179
+ },
3180
+ "152040": {
3181
+ "content": "|<EXTRA_TOKENS_394>|",
3182
+ "lstrip": false,
3183
+ "normalized": false,
3184
+ "rstrip": false,
3185
+ "single_word": false,
3186
+ "special": true
3187
+ },
3188
+ "152041": {
3189
+ "content": "|<EXTRA_TOKENS_395>|",
3190
+ "lstrip": false,
3191
+ "normalized": false,
3192
+ "rstrip": false,
3193
+ "single_word": false,
3194
+ "special": true
3195
+ },
3196
+ "152042": {
3197
+ "content": "|<EXTRA_TOKENS_396>|",
3198
+ "lstrip": false,
3199
+ "normalized": false,
3200
+ "rstrip": false,
3201
+ "single_word": false,
3202
+ "special": true
3203
+ },
3204
+ "152043": {
3205
+ "content": "|<EXTRA_TOKENS_397>|",
3206
+ "lstrip": false,
3207
+ "normalized": false,
3208
+ "rstrip": false,
3209
+ "single_word": false,
3210
+ "special": true
3211
+ },
3212
+ "152044": {
3213
+ "content": "|<EXTRA_TOKENS_398>|",
3214
+ "lstrip": false,
3215
+ "normalized": false,
3216
+ "rstrip": false,
3217
+ "single_word": false,
3218
+ "special": true
3219
+ },
3220
+ "152045": {
3221
+ "content": "|<EXTRA_TOKENS_399>|",
3222
+ "lstrip": false,
3223
+ "normalized": false,
3224
+ "rstrip": false,
3225
+ "single_word": false,
3226
+ "special": true
3227
+ },
3228
+ "152046": {
3229
+ "content": "|<EXTRA_TOKENS_400>|",
3230
+ "lstrip": false,
3231
+ "normalized": false,
3232
+ "rstrip": false,
3233
+ "single_word": false,
3234
+ "special": true
3235
+ },
3236
+ "152047": {
3237
+ "content": "|<EXTRA_TOKENS_401>|",
3238
+ "lstrip": false,
3239
+ "normalized": false,
3240
+ "rstrip": false,
3241
+ "single_word": false,
3242
+ "special": true
3243
+ },
3244
+ "152048": {
3245
+ "content": "|<EXTRA_TOKENS_402>|",
3246
+ "lstrip": false,
3247
+ "normalized": false,
3248
+ "rstrip": false,
3249
+ "single_word": false,
3250
+ "special": true
3251
+ },
3252
+ "152049": {
3253
+ "content": "|<EXTRA_TOKENS_403>|",
3254
+ "lstrip": false,
3255
+ "normalized": false,
3256
+ "rstrip": false,
3257
+ "single_word": false,
3258
+ "special": true
3259
+ },
3260
+ "152050": {
3261
+ "content": "|<EXTRA_TOKENS_404>|",
3262
+ "lstrip": false,
3263
+ "normalized": false,
3264
+ "rstrip": false,
3265
+ "single_word": false,
3266
+ "special": true
3267
+ },
3268
+ "152051": {
3269
+ "content": "|<EXTRA_TOKENS_405>|",
3270
+ "lstrip": false,
3271
+ "normalized": false,
3272
+ "rstrip": false,
3273
+ "single_word": false,
3274
+ "special": true
3275
+ },
3276
+ "152052": {
3277
+ "content": "|<EXTRA_TOKENS_406>|",
3278
+ "lstrip": false,
3279
+ "normalized": false,
3280
+ "rstrip": false,
3281
+ "single_word": false,
3282
+ "special": true
3283
+ },
3284
+ "152053": {
3285
+ "content": "|<EXTRA_TOKENS_407>|",
3286
+ "lstrip": false,
3287
+ "normalized": false,
3288
+ "rstrip": false,
3289
+ "single_word": false,
3290
+ "special": true
3291
+ },
3292
+ "152054": {
3293
+ "content": "|<EXTRA_TOKENS_408>|",
3294
+ "lstrip": false,
3295
+ "normalized": false,
3296
+ "rstrip": false,
3297
+ "single_word": false,
3298
+ "special": true
3299
+ },
3300
+ "152055": {
3301
+ "content": "|<EXTRA_TOKENS_409>|",
3302
+ "lstrip": false,
3303
+ "normalized": false,
3304
+ "rstrip": false,
3305
+ "single_word": false,
3306
+ "special": true
3307
+ },
3308
+ "152056": {
3309
+ "content": "|<EXTRA_TOKENS_410>|",
3310
+ "lstrip": false,
3311
+ "normalized": false,
3312
+ "rstrip": false,
3313
+ "single_word": false,
3314
+ "special": true
3315
+ },
3316
+ "152057": {
3317
+ "content": "|<EXTRA_TOKENS_411>|",
3318
+ "lstrip": false,
3319
+ "normalized": false,
3320
+ "rstrip": false,
3321
+ "single_word": false,
3322
+ "special": true
3323
+ },
3324
+ "152058": {
3325
+ "content": "|<EXTRA_TOKENS_412>|",
3326
+ "lstrip": false,
3327
+ "normalized": false,
3328
+ "rstrip": false,
3329
+ "single_word": false,
3330
+ "special": true
3331
+ },
3332
+ "152059": {
3333
+ "content": "|<EXTRA_TOKENS_413>|",
3334
+ "lstrip": false,
3335
+ "normalized": false,
3336
+ "rstrip": false,
3337
+ "single_word": false,
3338
+ "special": true
3339
+ },
3340
+ "152060": {
3341
+ "content": "|<EXTRA_TOKENS_414>|",
3342
+ "lstrip": false,
3343
+ "normalized": false,
3344
+ "rstrip": false,
3345
+ "single_word": false,
3346
+ "special": true
3347
+ },
3348
+ "152061": {
3349
+ "content": "|<EXTRA_TOKENS_415>|",
3350
+ "lstrip": false,
3351
+ "normalized": false,
3352
+ "rstrip": false,
3353
+ "single_word": false,
3354
+ "special": true
3355
+ },
3356
+ "152062": {
3357
+ "content": "|<EXTRA_TOKENS_416>|",
3358
+ "lstrip": false,
3359
+ "normalized": false,
3360
+ "rstrip": false,
3361
+ "single_word": false,
3362
+ "special": true
3363
+ },
3364
+ "152063": {
3365
+ "content": "|<EXTRA_TOKENS_417>|",
3366
+ "lstrip": false,
3367
+ "normalized": false,
3368
+ "rstrip": false,
3369
+ "single_word": false,
3370
+ "special": true
3371
+ },
3372
+ "152064": {
3373
+ "content": "<im_start>",
3374
+ "lstrip": false,
3375
+ "normalized": false,
3376
+ "rstrip": false,
3377
+ "single_word": false,
3378
+ "special": true
3379
+ },
3380
+ "152065": {
3381
+ "content": "<im_end>",
3382
+ "lstrip": false,
3383
+ "normalized": false,
3384
+ "rstrip": false,
3385
+ "single_word": false,
3386
+ "special": true
3387
+ },
3388
+ "152066": {
3389
+ "content": "<im_patch>",
3390
+ "lstrip": false,
3391
+ "normalized": false,
3392
+ "rstrip": false,
3393
+ "single_word": false,
3394
+ "special": true
3395
+ },
3396
+ "152067": {
3397
+ "content": "<im_col>",
3398
+ "lstrip": false,
3399
+ "normalized": false,
3400
+ "rstrip": false,
3401
+ "single_word": false,
3402
+ "special": true
3403
+ },
3404
+ "152068": {
3405
+ "content": "<|image|>",
3406
+ "lstrip": false,
3407
+ "normalized": false,
3408
+ "rstrip": false,
3409
+ "single_word": false,
3410
+ "special": true
3411
+ }
3412
+ },
3413
+ "additional_special_tokens": [
3414
+ "|<EXTRA_TOKENS_0>|",
3415
+ "|<EXTRA_TOKENS_1>|",
3416
+ "|<EXTRA_TOKENS_2>|",
3417
+ "|<EXTRA_TOKENS_3>|",
3418
+ "|<EXTRA_TOKENS_4>|",
3419
+ "|<EXTRA_TOKENS_5>|",
3420
+ "|<EXTRA_TOKENS_6>|",
3421
+ "|<EXTRA_TOKENS_7>|",
3422
+ "|<EXTRA_TOKENS_8>|",
3423
+ "|<EXTRA_TOKENS_9>|",
3424
+ "|<EXTRA_TOKENS_10>|",
3425
+ "|<EXTRA_TOKENS_11>|",
3426
+ "|<EXTRA_TOKENS_12>|",
3427
+ "|<EXTRA_TOKENS_13>|",
3428
+ "|<EXTRA_TOKENS_14>|",
3429
+ "|<EXTRA_TOKENS_15>|",
3430
+ "|<EXTRA_TOKENS_16>|",
3431
+ "|<EXTRA_TOKENS_17>|",
3432
+ "|<EXTRA_TOKENS_18>|",
3433
+ "|<EXTRA_TOKENS_19>|",
3434
+ "|<EXTRA_TOKENS_20>|",
3435
+ "|<EXTRA_TOKENS_21>|",
3436
+ "|<EXTRA_TOKENS_22>|",
3437
+ "|<EXTRA_TOKENS_23>|",
3438
+ "|<EXTRA_TOKENS_24>|",
3439
+ "|<EXTRA_TOKENS_25>|",
3440
+ "|<EXTRA_TOKENS_26>|",
3441
+ "|<EXTRA_TOKENS_27>|",
3442
+ "|<EXTRA_TOKENS_28>|",
3443
+ "|<EXTRA_TOKENS_29>|",
3444
+ "|<EXTRA_TOKENS_30>|",
3445
+ "|<EXTRA_TOKENS_31>|",
3446
+ "|<EXTRA_TOKENS_32>|",
3447
+ "|<EXTRA_TOKENS_33>|",
3448
+ "|<EXTRA_TOKENS_34>|",
3449
+ "|<EXTRA_TOKENS_35>|",
3450
+ "|<EXTRA_TOKENS_36>|",
3451
+ "|<EXTRA_TOKENS_37>|",
3452
+ "|<EXTRA_TOKENS_38>|",
3453
+ "|<EXTRA_TOKENS_39>|",
3454
+ "|<EXTRA_TOKENS_40>|",
3455
+ "|<EXTRA_TOKENS_41>|",
3456
+ "|<EXTRA_TOKENS_42>|",
3457
+ "|<EXTRA_TOKENS_43>|",
3458
+ "|<EXTRA_TOKENS_44>|",
3459
+ "|<EXTRA_TOKENS_45>|",
3460
+ "|<EXTRA_TOKENS_46>|",
3461
+ "|<EXTRA_TOKENS_47>|",
3462
+ "|<EXTRA_TOKENS_48>|",
3463
+ "|<EXTRA_TOKENS_49>|",
3464
+ "|<EXTRA_TOKENS_50>|",
3465
+ "|<EXTRA_TOKENS_51>|",
3466
+ "|<EXTRA_TOKENS_52>|",
3467
+ "|<EXTRA_TOKENS_53>|",
3468
+ "|<EXTRA_TOKENS_54>|",
3469
+ "|<EXTRA_TOKENS_55>|",
3470
+ "|<EXTRA_TOKENS_56>|",
3471
+ "|<EXTRA_TOKENS_57>|",
3472
+ "|<EXTRA_TOKENS_58>|",
3473
+ "|<EXTRA_TOKENS_59>|",
3474
+ "|<EXTRA_TOKENS_60>|",
3475
+ "|<EXTRA_TOKENS_61>|",
3476
+ "|<EXTRA_TOKENS_62>|",
3477
+ "|<EXTRA_TOKENS_63>|",
3478
+ "|<EXTRA_TOKENS_64>|",
3479
+ "|<EXTRA_TOKENS_65>|",
3480
+ "|<EXTRA_TOKENS_66>|",
3481
+ "|<EXTRA_TOKENS_67>|",
3482
+ "|<EXTRA_TOKENS_68>|",
3483
+ "|<EXTRA_TOKENS_69>|",
3484
+ "|<EXTRA_TOKENS_70>|",
3485
+ "|<EXTRA_TOKENS_71>|",
3486
+ "|<EXTRA_TOKENS_72>|",
3487
+ "|<EXTRA_TOKENS_73>|",
3488
+ "|<EXTRA_TOKENS_74>|",
3489
+ "|<EXTRA_TOKENS_75>|",
3490
+ "|<EXTRA_TOKENS_76>|",
3491
+ "|<EXTRA_TOKENS_77>|",
3492
+ "|<EXTRA_TOKENS_78>|",
3493
+ "|<EXTRA_TOKENS_79>|",
3494
+ "|<EXTRA_TOKENS_80>|",
3495
+ "|<EXTRA_TOKENS_81>|",
3496
+ "|<EXTRA_TOKENS_82>|",
3497
+ "|<EXTRA_TOKENS_83>|",
3498
+ "|<EXTRA_TOKENS_84>|",
3499
+ "|<EXTRA_TOKENS_85>|",
3500
+ "|<EXTRA_TOKENS_86>|",
3501
+ "|<EXTRA_TOKENS_87>|",
3502
+ "|<EXTRA_TOKENS_88>|",
3503
+ "|<EXTRA_TOKENS_89>|",
3504
+ "|<EXTRA_TOKENS_90>|",
3505
+ "|<EXTRA_TOKENS_91>|",
3506
+ "|<EXTRA_TOKENS_92>|",
3507
+ "|<EXTRA_TOKENS_93>|",
3508
+ "|<EXTRA_TOKENS_94>|",
3509
+ "|<EXTRA_TOKENS_95>|",
3510
+ "|<EXTRA_TOKENS_96>|",
3511
+ "|<EXTRA_TOKENS_97>|",
3512
+ "|<EXTRA_TOKENS_98>|",
3513
+ "|<EXTRA_TOKENS_99>|",
3514
+ "|<EXTRA_TOKENS_100>|",
3515
+ "|<EXTRA_TOKENS_101>|",
3516
+ "|<EXTRA_TOKENS_102>|",
3517
+ "|<EXTRA_TOKENS_103>|",
3518
+ "|<EXTRA_TOKENS_104>|",
3519
+ "|<EXTRA_TOKENS_105>|",
3520
+ "|<EXTRA_TOKENS_106>|",
3521
+ "|<EXTRA_TOKENS_107>|",
3522
+ "|<EXTRA_TOKENS_108>|",
3523
+ "|<EXTRA_TOKENS_109>|",
3524
+ "|<EXTRA_TOKENS_110>|",
3525
+ "|<EXTRA_TOKENS_111>|",
3526
+ "|<EXTRA_TOKENS_112>|",
3527
+ "|<EXTRA_TOKENS_113>|",
3528
+ "|<EXTRA_TOKENS_114>|",
3529
+ "|<EXTRA_TOKENS_115>|",
3530
+ "|<EXTRA_TOKENS_116>|",
3531
+ "|<EXTRA_TOKENS_117>|",
3532
+ "|<EXTRA_TOKENS_118>|",
3533
+ "|<EXTRA_TOKENS_119>|",
3534
+ "|<EXTRA_TOKENS_120>|",
3535
+ "|<EXTRA_TOKENS_121>|",
3536
+ "|<EXTRA_TOKENS_122>|",
3537
+ "|<EXTRA_TOKENS_123>|",
3538
+ "|<EXTRA_TOKENS_124>|",
3539
+ "|<EXTRA_TOKENS_125>|",
3540
+ "|<EXTRA_TOKENS_126>|",
3541
+ "|<EXTRA_TOKENS_127>|",
3542
+ "|<EXTRA_TOKENS_128>|",
3543
+ "|<EXTRA_TOKENS_129>|",
3544
+ "|<EXTRA_TOKENS_130>|",
3545
+ "|<EXTRA_TOKENS_131>|",
3546
+ "|<EXTRA_TOKENS_132>|",
3547
+ "|<EXTRA_TOKENS_133>|",
3548
+ "|<EXTRA_TOKENS_134>|",
3549
+ "|<EXTRA_TOKENS_135>|",
3550
+ "|<EXTRA_TOKENS_136>|",
3551
+ "|<EXTRA_TOKENS_137>|",
3552
+ "|<EXTRA_TOKENS_138>|",
3553
+ "|<EXTRA_TOKENS_139>|",
3554
+ "|<EXTRA_TOKENS_140>|",
3555
+ "|<EXTRA_TOKENS_141>|",
3556
+ "|<EXTRA_TOKENS_142>|",
3557
+ "|<EXTRA_TOKENS_143>|",
3558
+ "|<EXTRA_TOKENS_144>|",
3559
+ "|<EXTRA_TOKENS_145>|",
3560
+ "|<EXTRA_TOKENS_146>|",
3561
+ "|<EXTRA_TOKENS_147>|",
3562
+ "|<EXTRA_TOKENS_148>|",
3563
+ "|<EXTRA_TOKENS_149>|",
3564
+ "|<EXTRA_TOKENS_150>|",
3565
+ "|<EXTRA_TOKENS_151>|",
3566
+ "|<EXTRA_TOKENS_152>|",
3567
+ "|<EXTRA_TOKENS_153>|",
3568
+ "|<EXTRA_TOKENS_154>|",
3569
+ "|<EXTRA_TOKENS_155>|",
3570
+ "|<EXTRA_TOKENS_156>|",
3571
+ "|<EXTRA_TOKENS_157>|",
3572
+ "|<EXTRA_TOKENS_158>|",
3573
+ "|<EXTRA_TOKENS_159>|",
3574
+ "|<EXTRA_TOKENS_160>|",
3575
+ "|<EXTRA_TOKENS_161>|",
3576
+ "|<EXTRA_TOKENS_162>|",
3577
+ "|<EXTRA_TOKENS_163>|",
3578
+ "|<EXTRA_TOKENS_164>|",
3579
+ "|<EXTRA_TOKENS_165>|",
3580
+ "|<EXTRA_TOKENS_166>|",
3581
+ "|<EXTRA_TOKENS_167>|",
3582
+ "|<EXTRA_TOKENS_168>|",
3583
+ "|<EXTRA_TOKENS_169>|",
3584
+ "|<EXTRA_TOKENS_170>|",
3585
+ "|<EXTRA_TOKENS_171>|",
3586
+ "|<EXTRA_TOKENS_172>|",
3587
+ "|<EXTRA_TOKENS_173>|",
3588
+ "|<EXTRA_TOKENS_174>|",
3589
+ "|<EXTRA_TOKENS_175>|",
3590
+ "|<EXTRA_TOKENS_176>|",
3591
+ "|<EXTRA_TOKENS_177>|",
3592
+ "|<EXTRA_TOKENS_178>|",
3593
+ "|<EXTRA_TOKENS_179>|",
3594
+ "|<EXTRA_TOKENS_180>|",
3595
+ "|<EXTRA_TOKENS_181>|",
3596
+ "|<EXTRA_TOKENS_182>|",
3597
+ "|<EXTRA_TOKENS_183>|",
3598
+ "|<EXTRA_TOKENS_184>|",
3599
+ "|<EXTRA_TOKENS_185>|",
3600
+ "|<EXTRA_TOKENS_186>|",
3601
+ "|<EXTRA_TOKENS_187>|",
3602
+ "|<EXTRA_TOKENS_188>|",
3603
+ "|<EXTRA_TOKENS_189>|",
3604
+ "|<EXTRA_TOKENS_190>|",
3605
+ "|<EXTRA_TOKENS_191>|",
3606
+ "|<EXTRA_TOKENS_192>|",
3607
+ "|<EXTRA_TOKENS_193>|",
3608
+ "|<EXTRA_TOKENS_194>|",
3609
+ "|<EXTRA_TOKENS_195>|",
3610
+ "|<EXTRA_TOKENS_196>|",
3611
+ "|<EXTRA_TOKENS_197>|",
3612
+ "|<EXTRA_TOKENS_198>|",
3613
+ "|<EXTRA_TOKENS_199>|",
3614
+ "|<EXTRA_TOKENS_200>|",
3615
+ "|<EXTRA_TOKENS_201>|",
3616
+ "|<EXTRA_TOKENS_202>|",
3617
+ "|<EXTRA_TOKENS_203>|",
3618
+ "|<EXTRA_TOKENS_204>|",
3619
+ "|<EXTRA_TOKENS_205>|",
3620
+ "|<EXTRA_TOKENS_206>|",
3621
+ "|<EXTRA_TOKENS_207>|",
3622
+ "|<EXTRA_TOKENS_208>|",
3623
+ "|<EXTRA_TOKENS_209>|",
3624
+ "|<EXTRA_TOKENS_210>|",
3625
+ "|<EXTRA_TOKENS_211>|",
3626
+ "|<EXTRA_TOKENS_212>|",
3627
+ "|<EXTRA_TOKENS_213>|",
3628
+ "|<EXTRA_TOKENS_214>|",
3629
+ "|<EXTRA_TOKENS_215>|",
3630
+ "|<EXTRA_TOKENS_216>|",
3631
+ "|<EXTRA_TOKENS_217>|",
3632
+ "|<EXTRA_TOKENS_218>|",
3633
+ "|<EXTRA_TOKENS_219>|",
3634
+ "|<EXTRA_TOKENS_220>|",
3635
+ "|<EXTRA_TOKENS_221>|",
3636
+ "|<EXTRA_TOKENS_222>|",
3637
+ "|<EXTRA_TOKENS_223>|",
3638
+ "|<EXTRA_TOKENS_224>|",
3639
+ "|<EXTRA_TOKENS_225>|",
3640
+ "|<EXTRA_TOKENS_226>|",
3641
+ "|<EXTRA_TOKENS_227>|",
3642
+ "|<EXTRA_TOKENS_228>|",
3643
+ "|<EXTRA_TOKENS_229>|",
3644
+ "|<EXTRA_TOKENS_230>|",
3645
+ "|<EXTRA_TOKENS_231>|",
3646
+ "|<EXTRA_TOKENS_232>|",
3647
+ "|<EXTRA_TOKENS_233>|",
3648
+ "|<EXTRA_TOKENS_234>|",
3649
+ "|<EXTRA_TOKENS_235>|",
3650
+ "|<EXTRA_TOKENS_236>|",
3651
+ "|<EXTRA_TOKENS_237>|",
3652
+ "|<EXTRA_TOKENS_238>|",
3653
+ "|<EXTRA_TOKENS_239>|",
3654
+ "|<EXTRA_TOKENS_240>|",
3655
+ "|<EXTRA_TOKENS_241>|",
3656
+ "|<EXTRA_TOKENS_242>|",
3657
+ "|<EXTRA_TOKENS_243>|",
3658
+ "|<EXTRA_TOKENS_244>|",
3659
+ "|<EXTRA_TOKENS_245>|",
3660
+ "|<EXTRA_TOKENS_246>|",
3661
+ "|<EXTRA_TOKENS_247>|",
3662
+ "|<EXTRA_TOKENS_248>|",
3663
+ "|<EXTRA_TOKENS_249>|",
3664
+ "|<EXTRA_TOKENS_250>|",
3665
+ "|<EXTRA_TOKENS_251>|",
3666
+ "|<EXTRA_TOKENS_252>|",
3667
+ "|<EXTRA_TOKENS_253>|",
3668
+ "|<EXTRA_TOKENS_254>|",
3669
+ "|<EXTRA_TOKENS_255>|",
3670
+ "|<EXTRA_TOKENS_256>|",
3671
+ "|<EXTRA_TOKENS_257>|",
3672
+ "|<EXTRA_TOKENS_258>|",
3673
+ "|<EXTRA_TOKENS_259>|",
3674
+ "|<EXTRA_TOKENS_260>|",
3675
+ "|<EXTRA_TOKENS_261>|",
3676
+ "|<EXTRA_TOKENS_262>|",
3677
+ "|<EXTRA_TOKENS_263>|",
3678
+ "|<EXTRA_TOKENS_264>|",
3679
+ "|<EXTRA_TOKENS_265>|",
3680
+ "|<EXTRA_TOKENS_266>|",
3681
+ "|<EXTRA_TOKENS_267>|",
3682
+ "|<EXTRA_TOKENS_268>|",
3683
+ "|<EXTRA_TOKENS_269>|",
3684
+ "|<EXTRA_TOKENS_270>|",
3685
+ "|<EXTRA_TOKENS_271>|",
3686
+ "|<EXTRA_TOKENS_272>|",
3687
+ "|<EXTRA_TOKENS_273>|",
3688
+ "|<EXTRA_TOKENS_274>|",
3689
+ "|<EXTRA_TOKENS_275>|",
3690
+ "|<EXTRA_TOKENS_276>|",
3691
+ "|<EXTRA_TOKENS_277>|",
3692
+ "|<EXTRA_TOKENS_278>|",
3693
+ "|<EXTRA_TOKENS_279>|",
3694
+ "|<EXTRA_TOKENS_280>|",
3695
+ "|<EXTRA_TOKENS_281>|",
3696
+ "|<EXTRA_TOKENS_282>|",
3697
+ "|<EXTRA_TOKENS_283>|",
3698
+ "|<EXTRA_TOKENS_284>|",
3699
+ "|<EXTRA_TOKENS_285>|",
3700
+ "|<EXTRA_TOKENS_286>|",
3701
+ "|<EXTRA_TOKENS_287>|",
3702
+ "|<EXTRA_TOKENS_288>|",
3703
+ "|<EXTRA_TOKENS_289>|",
3704
+ "|<EXTRA_TOKENS_290>|",
3705
+ "|<EXTRA_TOKENS_291>|",
3706
+ "|<EXTRA_TOKENS_292>|",
3707
+ "|<EXTRA_TOKENS_293>|",
3708
+ "|<EXTRA_TOKENS_294>|",
3709
+ "|<EXTRA_TOKENS_295>|",
3710
+ "|<EXTRA_TOKENS_296>|",
3711
+ "|<EXTRA_TOKENS_297>|",
3712
+ "|<EXTRA_TOKENS_298>|",
3713
+ "|<EXTRA_TOKENS_299>|",
3714
+ "|<EXTRA_TOKENS_300>|",
3715
+ "|<EXTRA_TOKENS_301>|",
3716
+ "|<EXTRA_TOKENS_302>|",
3717
+ "|<EXTRA_TOKENS_303>|",
3718
+ "|<EXTRA_TOKENS_304>|",
3719
+ "|<EXTRA_TOKENS_305>|",
3720
+ "|<EXTRA_TOKENS_306>|",
3721
+ "|<EXTRA_TOKENS_307>|",
3722
+ "|<EXTRA_TOKENS_308>|",
3723
+ "|<EXTRA_TOKENS_309>|",
3724
+ "|<EXTRA_TOKENS_310>|",
3725
+ "|<EXTRA_TOKENS_311>|",
3726
+ "|<EXTRA_TOKENS_312>|",
3727
+ "|<EXTRA_TOKENS_313>|",
3728
+ "|<EXTRA_TOKENS_314>|",
3729
+ "|<EXTRA_TOKENS_315>|",
3730
+ "|<EXTRA_TOKENS_316>|",
3731
+ "|<EXTRA_TOKENS_317>|",
3732
+ "|<EXTRA_TOKENS_318>|",
3733
+ "|<EXTRA_TOKENS_319>|",
3734
+ "|<EXTRA_TOKENS_320>|",
3735
+ "|<EXTRA_TOKENS_321>|",
3736
+ "|<EXTRA_TOKENS_322>|",
3737
+ "|<EXTRA_TOKENS_323>|",
3738
+ "|<EXTRA_TOKENS_324>|",
3739
+ "|<EXTRA_TOKENS_325>|",
3740
+ "|<EXTRA_TOKENS_326>|",
3741
+ "|<EXTRA_TOKENS_327>|",
3742
+ "|<EXTRA_TOKENS_328>|",
3743
+ "|<EXTRA_TOKENS_329>|",
3744
+ "|<EXTRA_TOKENS_330>|",
3745
+ "|<EXTRA_TOKENS_331>|",
3746
+ "|<EXTRA_TOKENS_332>|",
3747
+ "|<EXTRA_TOKENS_333>|",
3748
+ "|<EXTRA_TOKENS_334>|",
3749
+ "|<EXTRA_TOKENS_335>|",
3750
+ "|<EXTRA_TOKENS_336>|",
3751
+ "|<EXTRA_TOKENS_337>|",
3752
+ "|<EXTRA_TOKENS_338>|",
3753
+ "|<EXTRA_TOKENS_339>|",
3754
+ "|<EXTRA_TOKENS_340>|",
3755
+ "|<EXTRA_TOKENS_341>|",
3756
+ "|<EXTRA_TOKENS_342>|",
3757
+ "|<EXTRA_TOKENS_343>|",
3758
+ "|<EXTRA_TOKENS_344>|",
3759
+ "|<EXTRA_TOKENS_345>|",
3760
+ "|<EXTRA_TOKENS_346>|",
3761
+ "|<EXTRA_TOKENS_347>|",
3762
+ "|<EXTRA_TOKENS_348>|",
3763
+ "|<EXTRA_TOKENS_349>|",
3764
+ "|<EXTRA_TOKENS_350>|",
3765
+ "|<EXTRA_TOKENS_351>|",
3766
+ "|<EXTRA_TOKENS_352>|",
3767
+ "|<EXTRA_TOKENS_353>|",
3768
+ "|<EXTRA_TOKENS_354>|",
3769
+ "|<EXTRA_TOKENS_355>|",
3770
+ "|<EXTRA_TOKENS_356>|",
3771
+ "|<EXTRA_TOKENS_357>|",
3772
+ "|<EXTRA_TOKENS_358>|",
3773
+ "|<EXTRA_TOKENS_359>|",
3774
+ "|<EXTRA_TOKENS_360>|",
3775
+ "|<EXTRA_TOKENS_361>|",
3776
+ "|<EXTRA_TOKENS_362>|",
3777
+ "|<EXTRA_TOKENS_363>|",
3778
+ "|<EXTRA_TOKENS_364>|",
3779
+ "|<EXTRA_TOKENS_365>|",
3780
+ "|<EXTRA_TOKENS_366>|",
3781
+ "|<EXTRA_TOKENS_367>|",
3782
+ "|<EXTRA_TOKENS_368>|",
3783
+ "|<EXTRA_TOKENS_369>|",
3784
+ "|<EXTRA_TOKENS_370>|",
3785
+ "|<EXTRA_TOKENS_371>|",
3786
+ "|<EXTRA_TOKENS_372>|",
3787
+ "|<EXTRA_TOKENS_373>|",
3788
+ "|<EXTRA_TOKENS_374>|",
3789
+ "|<EXTRA_TOKENS_375>|",
3790
+ "|<EXTRA_TOKENS_376>|",
3791
+ "|<EXTRA_TOKENS_377>|",
3792
+ "|<EXTRA_TOKENS_378>|",
3793
+ "|<EXTRA_TOKENS_379>|",
3794
+ "|<EXTRA_TOKENS_380>|",
3795
+ "|<EXTRA_TOKENS_381>|",
3796
+ "|<EXTRA_TOKENS_382>|",
3797
+ "|<EXTRA_TOKENS_383>|",
3798
+ "|<EXTRA_TOKENS_384>|",
3799
+ "|<EXTRA_TOKENS_385>|",
3800
+ "|<EXTRA_TOKENS_386>|",
3801
+ "|<EXTRA_TOKENS_387>|",
3802
+ "|<EXTRA_TOKENS_388>|",
3803
+ "|<EXTRA_TOKENS_389>|",
3804
+ "|<EXTRA_TOKENS_390>|",
3805
+ "|<EXTRA_TOKENS_391>|",
3806
+ "|<EXTRA_TOKENS_392>|",
3807
+ "|<EXTRA_TOKENS_393>|",
3808
+ "|<EXTRA_TOKENS_394>|",
3809
+ "|<EXTRA_TOKENS_395>|",
3810
+ "|<EXTRA_TOKENS_396>|",
3811
+ "|<EXTRA_TOKENS_397>|",
3812
+ "|<EXTRA_TOKENS_398>|",
3813
+ "|<EXTRA_TOKENS_399>|",
3814
+ "|<EXTRA_TOKENS_400>|",
3815
+ "|<EXTRA_TOKENS_401>|",
3816
+ "|<EXTRA_TOKENS_402>|",
3817
+ "|<EXTRA_TOKENS_403>|",
3818
+ "|<EXTRA_TOKENS_404>|",
3819
+ "|<EXTRA_TOKENS_405>|",
3820
+ "|<EXTRA_TOKENS_406>|",
3821
+ "|<EXTRA_TOKENS_407>|",
3822
+ "|<EXTRA_TOKENS_408>|",
3823
+ "|<EXTRA_TOKENS_409>|",
3824
+ "|<EXTRA_TOKENS_410>|",
3825
+ "|<EXTRA_TOKENS_411>|",
3826
+ "|<EXTRA_TOKENS_412>|",
3827
+ "|<EXTRA_TOKENS_413>|",
3828
+ "|<EXTRA_TOKENS_414>|",
3829
+ "|<EXTRA_TOKENS_415>|",
3830
+ "|<EXTRA_TOKENS_416>|",
3831
+ "|<EXTRA_TOKENS_417>|",
3832
+ "<im_start>",
3833
+ "<im_end>",
3834
+ "<im_patch>",
3835
+ "<im_col>",
3836
+ "<|image|>"
3837
+ ],
3838
+ "auto_map": {
3839
+ "AutoProcessor": "preprocessing_molmo.MolmoProcessor"
3840
+ },
3841
+ "bos_token": null,
3842
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
3843
+ "clean_up_tokenization_spaces": false,
3844
+ "eos_token": "<|endoftext|>",
3845
+ "errors": "replace",
3846
+ "model_max_length": 32768,
3847
+ "pad_token": "<|endoftext|>",
3848
+ "processor_class": "MolmoProcessor",
3849
+ "split_special_tokens": false,
3850
+ "tokenizer_class": "Qwen2Tokenizer",
3851
+ "unk_token": null
3852
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff