|
--- |
|
license: apache-2.0 |
|
base_model: ntu-spml/distilhubert |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- marsyas/gtzan |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: distilhubert-finetuned-gtzan-2 |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: GTZAN |
|
type: marsyas/gtzan |
|
config: all |
|
split: train |
|
args: all |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.86 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilhubert-finetuned-gtzan-2 |
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7203 |
|
- Accuracy: 0.86 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 10 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.2 |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.2521 | 1.0 | 90 | 2.2219 | 0.3 | |
|
| 1.8502 | 2.0 | 180 | 1.8299 | 0.54 | |
|
| 1.4155 | 3.0 | 270 | 1.4247 | 0.64 | |
|
| 0.9885 | 4.0 | 360 | 1.0313 | 0.7 | |
|
| 0.8111 | 5.0 | 450 | 0.8535 | 0.78 | |
|
| 0.7023 | 6.0 | 540 | 0.7743 | 0.79 | |
|
| 0.5663 | 7.0 | 630 | 0.6618 | 0.81 | |
|
| 0.3577 | 8.0 | 720 | 0.6937 | 0.77 | |
|
| 0.3003 | 9.0 | 810 | 0.6107 | 0.82 | |
|
| 0.1321 | 10.0 | 900 | 0.5648 | 0.81 | |
|
| 0.0488 | 11.0 | 990 | 0.5655 | 0.84 | |
|
| 0.0323 | 12.0 | 1080 | 0.5612 | 0.86 | |
|
| 0.0154 | 13.0 | 1170 | 0.6338 | 0.85 | |
|
| 0.0108 | 14.0 | 1260 | 0.7292 | 0.84 | |
|
| 0.0082 | 15.0 | 1350 | 0.7542 | 0.84 | |
|
| 0.0065 | 16.0 | 1440 | 0.7123 | 0.86 | |
|
| 0.0062 | 17.0 | 1530 | 0.6949 | 0.86 | |
|
| 0.0848 | 18.0 | 1620 | 0.7332 | 0.85 | |
|
| 0.0053 | 19.0 | 1710 | 0.7291 | 0.85 | |
|
| 0.005 | 20.0 | 1800 | 0.7203 | 0.86 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.2.1 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|