File size: 1,907 Bytes
de822b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-NER
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-NER
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0649
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.9838
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| No log | 0.91 | 200 | 0.0681 | 0.0 | 0.0 | 0.0 | 0.9805 |
| No log | 1.82 | 400 | 0.0599 | 0.0 | 0.0 | 0.0 | 0.9827 |
| 0.1171 | 2.73 | 600 | 0.0641 | 0.0 | 0.0 | 0.0 | 0.9834 |
| 0.1171 | 3.64 | 800 | 0.0652 | 0.0 | 0.0 | 0.0 | 0.9843 |
| 0.0177 | 4.55 | 1000 | 0.0649 | 0.0 | 0.0 | 0.0 | 0.9838 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|