File size: 2,280 Bytes
4867411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: BERT_ep9_lr2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERT_ep9_lr2
This model is a fine-tuned version of [ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT](https://huggingface.co/ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0899
- Precision: 0.8601
- Recall: 0.8819
- F1: 0.8709
- Accuracy: 0.9780
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 9
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 467 | 0.0847 | 0.8136 | 0.8571 | 0.8348 | 0.9722 |
| 0.1137 | 2.0 | 934 | 0.0748 | 0.8367 | 0.8735 | 0.8547 | 0.9755 |
| 0.0747 | 3.0 | 1401 | 0.0747 | 0.8550 | 0.8702 | 0.8625 | 0.9769 |
| 0.0603 | 4.0 | 1868 | 0.0805 | 0.8485 | 0.8765 | 0.8622 | 0.9769 |
| 0.0479 | 5.0 | 2335 | 0.0830 | 0.8607 | 0.8778 | 0.8692 | 0.9776 |
| 0.0433 | 6.0 | 2802 | 0.0853 | 0.8560 | 0.8803 | 0.8680 | 0.9775 |
| 0.0352 | 7.0 | 3269 | 0.0869 | 0.8567 | 0.8852 | 0.8707 | 0.9778 |
| 0.0329 | 8.0 | 3736 | 0.0884 | 0.8583 | 0.8822 | 0.8701 | 0.9779 |
| 0.0305 | 9.0 | 4203 | 0.0899 | 0.8601 | 0.8819 | 0.8709 | 0.9780 |
### Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
|