File size: 2,005 Bytes
73db0a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: BERT_ep6_lr4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BERT_ep6_lr4

This model is a fine-tuned version of [ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT](https://huggingface.co/ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1977
- Precision: 0.6776
- Recall: 0.7052
- F1: 0.6911
- Accuracy: 0.9476

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-08
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 467  | 0.2591          | 0.6800    | 0.6636 | 0.6717 | 0.9439   |
| 0.2747        | 2.0   | 934  | 0.2325          | 0.6757    | 0.6824 | 0.6790 | 0.9452   |
| 0.2444        | 3.0   | 1401 | 0.2158          | 0.6761    | 0.6955 | 0.6857 | 0.9465   |
| 0.2184        | 4.0   | 1868 | 0.2052          | 0.6780    | 0.7025 | 0.6900 | 0.9471   |
| 0.2087        | 5.0   | 2335 | 0.1994          | 0.6777    | 0.7049 | 0.6910 | 0.9475   |
| 0.1984        | 6.0   | 2802 | 0.1977          | 0.6776    | 0.7052 | 0.6911 | 0.9476   |


### Framework versions

- Transformers 4.27.4
- Pytorch 1.13.1+cu116
- Datasets 2.11.0
- Tokenizers 0.13.2