File size: 2,494 Bytes
0a52c30
 
 
 
 
6e2b37a
04cee0e
 
0a52c30
6e2b37a
0a52c30
 
 
 
 
 
6e2b37a
0a52c30
6e2b37a
0a52c30
70b821e
0a52c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70b821e
0a52c30
 
 
 
 
 
 
 
 
 
 
 
 
 
70b821e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a52c30
 
 
 
 
 
 
70b821e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: mit
tags:
- generated_from_trainer
datasets:
- voxpopuli
pipeline_tag: text-to-speech
base_model: microsoft/speecht5_tts
model-index:
- name: speecht5_finetuned_facebook_voxpopuli_spanish
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_finetuned_facebook_voxpopuli_spanish

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4355

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.484         | 1.0   | 1074  | 0.4623          |
| 0.4724        | 2.0   | 2148  | 0.4542          |
| 0.4646        | 3.0   | 3222  | 0.4474          |
| 0.463         | 4.0   | 4296  | 0.4451          |
| 0.4538        | 5.0   | 5370  | 0.4425          |
| 0.4509        | 6.0   | 6444  | 0.4408          |
| 0.4548        | 7.0   | 7518  | 0.4412          |
| 0.4465        | 8.0   | 8592  | 0.4389          |
| 0.4509        | 9.0   | 9666  | 0.4387          |
| 0.4424        | 10.0  | 10740 | 0.4369          |
| 0.4415        | 11.0  | 11814 | 0.4367          |
| 0.4386        | 12.0  | 12888 | 0.4366          |
| 0.4383        | 13.0  | 13962 | 0.4357          |
| 0.4396        | 14.0  | 15036 | 0.4348          |
| 0.4432        | 15.0  | 16110 | 0.4358          |
| 0.4378        | 16.0  | 17184 | 0.4356          |
| 0.4321        | 17.0  | 18258 | 0.4353          |
| 0.4381        | 18.0  | 19332 | 0.4353          |
| 0.4325        | 19.0  | 20406 | 0.4347          |
| 0.4336        | 20.0  | 21480 | 0.4355          |


### Framework versions

- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3