File size: 4,721 Bytes
0501696
 
6d40efb
0501696
 
6d40efb
 
0501696
 
 
 
 
 
 
 
 
 
6d40efb
0501696
6d40efb
 
 
 
0501696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d40efb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0501696
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
license: apache-2.0
base_model: Samuael/asr-amharic-phoneme-based-37-6
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: asr-amharic-phoneme-based-37-6
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# asr-amharic-phoneme-based-37-6

This model is a fine-tuned version of [Samuael/asr-amharic-phoneme-based-37-6](https://huggingface.co/Samuael/asr-amharic-phoneme-based-37-6) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2467
- Wer: 0.2877
- Phoneme Cer: 0.0539
- Cer: 0.0777

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Phoneme Cer | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:------:|
| 3.2186        | 0.25  | 200  | 3.2626          | 1.0    | 1.0         | 1.0    |
| 3.0459        | 0.5   | 400  | 3.0440          | 1.0    | 1.0         | 1.0    |
| 2.9983        | 0.75  | 600  | 2.9807          | 1.0    | 1.0         | 1.0    |
| 1.8006        | 1.0   | 800  | 1.4020          | 0.8218 | 0.2751      | 0.4270 |
| 0.6145        | 1.25  | 1000 | 0.4420          | 0.3611 | 0.0717      | 0.1040 |
| 0.4288        | 1.5   | 1200 | 0.3304          | 0.3394 | 0.0649      | 0.0941 |
| 0.3335        | 1.75  | 1400 | 0.2996          | 0.3314 | 0.0622      | 0.0909 |
| 0.4583        | 2.01  | 1600 | 0.2815          | 0.3263 | 0.0612      | 0.0890 |
| 0.3966        | 2.26  | 1800 | 0.2743          | 0.3120 | 0.0584      | 0.0847 |
| 0.3781        | 2.51  | 2000 | 0.2669          | 0.3241 | 0.0609      | 0.0881 |
| 0.5792        | 2.76  | 2200 | 0.2597          | 0.3135 | 0.0590      | 0.0857 |
| 0.3322        | 3.01  | 2400 | 0.2548          | 0.3076 | 0.0575      | 0.0837 |
| 0.4129        | 3.26  | 2600 | 0.2577          | 0.3051 | 0.0575      | 0.0832 |
| 0.3453        | 3.51  | 2800 | 0.2520          | 0.3070 | 0.0577      | 0.0828 |
| 0.3279        | 3.76  | 3000 | 0.2516          | 0.2989 | 0.0563      | 0.0818 |
| 0.3312        | 4.01  | 3200 | 0.2487          | 0.2947 | 0.0553      | 0.0801 |
| 0.2818        | 4.26  | 3400 | 0.2530          | 0.2985 | 0.0563      | 0.0816 |
| 0.2244        | 4.51  | 3600 | 0.2529          | 0.3021 | 0.0565      | 0.0820 |
| 0.3562        | 4.76  | 3800 | 0.2477          | 0.2984 | 0.0563      | 0.0814 |
| 0.2922        | 5.01  | 4000 | 0.2530          | 0.2995 | 0.0563      | 0.0813 |
| 0.2535        | 5.26  | 4200 | 0.2516          | 0.2990 | 0.0556      | 0.0805 |
| 0.2043        | 5.51  | 4400 | 0.2532          | 0.2966 | 0.0557      | 0.0800 |
| 0.2653        | 5.76  | 4600 | 0.2471          | 0.2922 | 0.0548      | 0.0792 |
| 0.4389        | 6.02  | 4800 | 0.2493          | 0.2942 | 0.0555      | 0.0805 |
| 0.2757        | 6.27  | 5000 | 0.2533          | 0.2928 | 0.0551      | 0.0799 |
| 0.3063        | 6.52  | 5200 | 0.2459          | 0.2950 | 0.0554      | 0.0800 |
| 0.2069        | 6.77  | 5400 | 0.2499          | 0.2946 | 0.0555      | 0.0800 |
| 0.2018        | 7.02  | 5600 | 0.2503          | 0.2934 | 0.0549      | 0.0792 |
| 0.2068        | 7.27  | 5800 | 0.2469          | 0.2966 | 0.0551      | 0.0798 |
| 0.2535        | 7.52  | 6000 | 0.2513          | 0.2936 | 0.0548      | 0.0792 |
| 0.285         | 7.77  | 6200 | 0.2492          | 0.2941 | 0.0548      | 0.0795 |
| 0.1801        | 8.02  | 6400 | 0.2460          | 0.2896 | 0.0540      | 0.0781 |
| 0.1705        | 8.27  | 6600 | 0.2475          | 0.2933 | 0.0549      | 0.0793 |
| 0.3344        | 8.52  | 6800 | 0.2501          | 0.2890 | 0.0540      | 0.0777 |
| 0.2236        | 8.77  | 7000 | 0.2471          | 0.2871 | 0.0536      | 0.0773 |
| 0.349         | 9.02  | 7200 | 0.2480          | 0.2869 | 0.0541      | 0.0779 |
| 0.2692        | 9.27  | 7400 | 0.2482          | 0.2891 | 0.0540      | 0.0779 |
| 0.2265        | 9.52  | 7600 | 0.2481          | 0.2879 | 0.0539      | 0.0776 |
| 0.1649        | 9.77  | 7800 | 0.2467          | 0.2877 | 0.0539      | 0.0777 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1