|
import tensorflow as tf |
|
physical_devices = tf.config.experimental.list_physical_devices('GPU') |
|
if len(physical_devices) > 0: |
|
tf.config.experimental.set_memory_growth(physical_devices[0], True) |
|
from absl import app, flags, logging |
|
from absl.flags import FLAGS |
|
import core.utils as utils |
|
from core.yolov4 import filter_boxes |
|
from tensorflow.python.saved_model import tag_constants |
|
from PIL import Image |
|
import cv2 |
|
import numpy as np |
|
from tensorflow.compat.v1 import ConfigProto |
|
from tensorflow.compat.v1 import InteractiveSession |
|
|
|
flags.DEFINE_string('framework', 'tf', '(tf, tflite, trt') |
|
flags.DEFINE_string('weights', './checkpoints/yolov4-416', |
|
'path to weights file') |
|
flags.DEFINE_integer('size', 416, 'resize images to') |
|
flags.DEFINE_boolean('tiny', False, 'yolo or yolo-tiny') |
|
flags.DEFINE_string('model', 'yolov4', 'yolov3 or yolov4') |
|
flags.DEFINE_string('image', './data/kite.jpg', 'path to input image') |
|
flags.DEFINE_string('output', 'result.png', 'path to output image') |
|
flags.DEFINE_float('iou', 0.45, 'iou threshold') |
|
flags.DEFINE_float('score', 0.25, 'score threshold') |
|
|
|
def main(_argv): |
|
config = ConfigProto() |
|
config.gpu_options.allow_growth = True |
|
session = InteractiveSession(config=config) |
|
STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(FLAGS) |
|
input_size = FLAGS.size |
|
image_path = FLAGS.image |
|
|
|
original_image = cv2.imread(image_path) |
|
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
image_data = cv2.resize(original_image, (input_size, input_size)) |
|
image_data = image_data / 255. |
|
|
|
|
|
images_data = [] |
|
for i in range(1): |
|
images_data.append(image_data) |
|
images_data = np.asarray(images_data).astype(np.float32) |
|
|
|
if FLAGS.framework == 'tflite': |
|
interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) |
|
interpreter.allocate_tensors() |
|
input_details = interpreter.get_input_details() |
|
output_details = interpreter.get_output_details() |
|
print(input_details) |
|
print(output_details) |
|
interpreter.set_tensor(input_details[0]['index'], images_data) |
|
interpreter.invoke() |
|
pred = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))] |
|
if FLAGS.model == 'yolov3' and FLAGS.tiny == True: |
|
boxes, pred_conf = filter_boxes(pred[1], pred[0], score_threshold=0.25, input_shape=tf.constant([input_size, input_size])) |
|
else: |
|
boxes, pred_conf = filter_boxes(pred[0], pred[1], score_threshold=0.25, input_shape=tf.constant([input_size, input_size])) |
|
else: |
|
saved_model_loaded = tf.saved_model.load(FLAGS.weights, tags=[tag_constants.SERVING]) |
|
infer = saved_model_loaded.signatures['serving_default'] |
|
batch_data = tf.constant(images_data) |
|
pred_bbox = infer(batch_data) |
|
for key, value in pred_bbox.items(): |
|
boxes = value[:, :, 0:4] |
|
pred_conf = value[:, :, 4:] |
|
|
|
boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression( |
|
boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)), |
|
scores=tf.reshape( |
|
pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])), |
|
max_output_size_per_class=50, |
|
max_total_size=50, |
|
iou_threshold=FLAGS.iou, |
|
score_threshold=FLAGS.score |
|
) |
|
pred_bbox = [boxes.numpy(), scores.numpy(), classes.numpy(), valid_detections.numpy()] |
|
image = utils.draw_bbox(original_image, pred_bbox) |
|
|
|
image = Image.fromarray(image.astype(np.uint8)) |
|
image.show() |
|
image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB) |
|
cv2.imwrite(FLAGS.output, image) |
|
|
|
if __name__ == '__main__': |
|
try: |
|
app.run(main) |
|
except SystemExit: |
|
pass |
|
|