File size: 27,608 Bytes
ed25c49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 |
import os
import sys
import torch
import logging
import speechbrain as sb
from speechbrain.utils.distributed import run_on_main
from hyperpyyaml import load_hyperpyyaml
from pathlib import Path
import torchaudio.transforms as T
from cv_train import ASRCV
import torchaudio
import numpy as np
import kenlm
from pyctcdecode import build_ctcdecoder
import re
from torch.nn.utils.rnn import pad_sequence
import torch.optim as optim
import torch.nn as nn
# Commented out IPython magic to ensure Python compatibility.
hparams_file, run_opts, overrides = sb.parse_arguments(["TunisianASR/semi_trained.yaml"])
# If distributed_launch=True then
# create ddp_group with the right communication protocol
sb.utils.distributed.ddp_init_group(run_opts)
with open(hparams_file) as fin:
hparams = load_hyperpyyaml(fin, overrides)
# Create experiment directory
sb.create_experiment_directory(
experiment_directory=hparams["output_folder"],
hyperparams_to_save=hparams_file,
overrides=overrides,
)
# Dataset prep (parsing Librispeech)
def dataio_prepare(hparams):
"""This function prepares the datasets to be used in the brain class.
It also defines the data processing pipeline through user-defined functions."""
# 1. Define datasets
data_folder = hparams["data_folder"]
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
)
if hparams["sorting"] == "ascending":
# we sort training data to speed up training and get better results.
train_data = train_data.filtered_sorted(
sort_key="duration",
key_max_value={"duration": hparams["avoid_if_longer_than"]},
)
# when sorting do not shuffle in dataloader ! otherwise is pointless
hparams["dataloader_options"]["shuffle"] = False
elif hparams["sorting"] == "descending":
train_data = train_data.filtered_sorted(
sort_key="duration",
reverse=True,
key_max_value={"duration": hparams["avoid_if_longer_than"]},
)
# when sorting do not shuffle in dataloader ! otherwise is pointless
hparams["dataloader_options"]["shuffle"] = False
elif hparams["sorting"] == "random":
pass
else:
raise NotImplementedError(
"sorting must be random, ascending or descending"
)
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
)
# We also sort the validation data so it is faster to validate
valid_data = valid_data.filtered_sorted(sort_key="duration")
test_datasets = {}
for csv_file in hparams["test_csv"]:
name = Path(csv_file).stem
test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=csv_file, replacements={"data_root": data_folder}
)
test_datasets[name] = test_datasets[name].filtered_sorted(
sort_key="duration"
)
datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]
# 2. Define audio pipeline:
@sb.utils.data_pipeline.takes("wav")
@sb.utils.data_pipeline.provides("sig")
def audio_pipeline(wav):
info = torchaudio.info(wav)
sig = sb.dataio.dataio.read_audio(wav)
if len(sig.shape)>1 :
sig = torch.mean(sig, dim=1)
resampled = torchaudio.transforms.Resample(
info.sample_rate, hparams["sample_rate"],
)(sig)
return resampled
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
label_encoder = sb.dataio.encoder.CTCTextEncoder()
# 3. Define text pipeline:
@sb.utils.data_pipeline.takes("wrd")
@sb.utils.data_pipeline.provides(
"wrd", "char_list", "tokens_list", "tokens"
)
def text_pipeline(wrd):
yield wrd
char_list = list(wrd)
yield char_list
tokens_list = label_encoder.encode_sequence(char_list)
yield tokens_list
tokens = torch.LongTensor(tokens_list)
yield tokens
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
special_labels = {
"blank_label": hparams["blank_index"],
"unk_label": hparams["unk_index"]
}
label_encoder.load_or_create(
path=lab_enc_file,
from_didatasets=[train_data],
output_key="char_list",
special_labels=special_labels,
sequence_input=True,
)
# 4. Set output:
sb.dataio.dataset.set_output_keys(
datasets, ["id", "sig", "wrd", "char_list", "tokens"],
)
return train_data, valid_data,test_datasets, label_encoder
class ASR(sb.core.Brain):
def compute_forward(self, batch, stage):
"""Forward computations from the waveform batches to the output probabilities."""
batch = batch.to(self.device)
wavs, wav_lens = batch.sig
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
if stage == sb.Stage.TRAIN:
if hasattr(self.hparams, "augmentation"):
wavs = self.hparams.augmentation(wavs, wav_lens)
# Forward pass
feats = self.modules.wav2vec2(wavs, wav_lens)
x = self.modules.enc(feats)
logits = self.modules.ctc_lin(x)
p_ctc = self.hparams.log_softmax(logits)
return p_ctc, wav_lens
def custom_encode(self,wavs,wav_lens) :
wavs = wavs.to("cpu")
if(wav_lens is not None): wav_lens.to(self.device)
feats = self.modules.wav2vec2(wavs, wav_lens)
x = self.modules.enc(feats)
logits = self.modules.ctc_lin(x)
p_ctc = self.hparams.log_softmax(logits)
return feats,p_ctc
def compute_objectives(self, predictions, batch, stage):
"""Computes the loss (CTC) given predictions and targets."""
p_ctc, wav_lens = predictions
ids = batch.id
tokens, tokens_lens = batch.tokens
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
if stage != sb.Stage.TRAIN:
predicted_tokens = sb.decoders.ctc_greedy_decode(
p_ctc, wav_lens, blank_id=self.hparams.blank_index
)
# Decode token terms to words
if self.hparams.use_language_modelling:
predicted_words = []
for logs in p_ctc:
text = decoder.decode(logs.detach().cpu().numpy())
predicted_words.append(text.split(" "))
else:
predicted_words = [
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
for utt_seq in predicted_tokens
]
# Convert indices to words
target_words = [wrd.split(" ") for wrd in batch.wrd]
self.wer_metric.append(ids, predicted_words, target_words)
self.cer_metric.append(ids, predicted_words, target_words)
return loss
def fit_batch(self, batch):
"""Train the parameters given a single batch in input"""
should_step = self.step % self.grad_accumulation_factor == 0
# Managing automatic mixed precision
# TOFIX: CTC fine-tuning currently is unstable
# This is certainly due to CTC being done in fp16 instead of fp32
if self.auto_mix_prec:
with torch.cuda.amp.autocast():
with self.no_sync():
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
with self.no_sync(not should_step):
self.scaler.scale(
loss / self.grad_accumulation_factor
).backward()
if should_step:
if not self.hparams.wav2vec2.freeze:
self.scaler.unscale_(self.wav2vec_optimizer)
self.scaler.unscale_(self.model_optimizer)
if self.check_gradients(loss):
if not self.hparams.wav2vec2.freeze:
if self.optimizer_step >= self.hparams.warmup_steps:
self.scaler.step(self.wav2vec_optimizer)
self.scaler.step(self.model_optimizer)
self.scaler.update()
self.zero_grad()
self.optimizer_step += 1
else:
# This is mandatory because HF models have a weird behavior with DDP
# on the forward pass
with self.no_sync():
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
with self.no_sync(not should_step):
(loss / self.grad_accumulation_factor).backward()
if should_step:
if self.check_gradients(loss):
if not self.hparams.wav2vec2.freeze:
if self.optimizer_step >= self.hparams.warmup_steps:
self.wav2vec_optimizer.step()
self.model_optimizer.step()
self.zero_grad()
self.optimizer_step += 1
self.on_fit_batch_end(batch, outputs, loss, should_step)
return loss.detach().cpu()
def evaluate_batch(self, batch, stage):
"""Computations needed for validation/test batches"""
predictions = self.compute_forward(batch, stage=stage)
with torch.no_grad():
loss = self.compute_objectives(predictions, batch, stage=stage)
return loss.detach()
def on_stage_start(self, stage, epoch):
"""Gets called at the beginning of each epoch"""
if stage != sb.Stage.TRAIN:
self.cer_metric = self.hparams.cer_computer()
self.wer_metric = self.hparams.error_rate_computer()
def on_stage_end(self, stage, stage_loss, epoch):
"""Gets called at the end of an epoch."""
# Compute/store important stats
stage_stats = {"loss": stage_loss}
if stage == sb.Stage.TRAIN:
self.train_stats = stage_stats
else:
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
# Perform end-of-iteration things, like annealing, logging, etc.
if stage == sb.Stage.VALID:
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
stage_stats["loss"]
)
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
stage_stats["loss"]
)
sb.nnet.schedulers.update_learning_rate(
self.model_optimizer, new_lr_model
)
if not self.hparams.wav2vec2.freeze:
sb.nnet.schedulers.update_learning_rate(
self.wav2vec_optimizer, new_lr_wav2vec
)
self.hparams.train_logger.log_stats(
stats_meta={
"epoch": epoch,
"lr_model": old_lr_model,
"lr_wav2vec": old_lr_wav2vec,
},
train_stats=self.train_stats,
valid_stats=stage_stats,
)
self.checkpointer.save_and_keep_only(
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
)
elif stage == sb.Stage.TEST:
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
test_stats=stage_stats,
)
with open(self.hparams.wer_file, "w") as w:
self.wer_metric.write_stats(w)
def init_optimizers(self):
"Initializes the wav2vec2 optimizer and model optimizer"
# If the wav2vec encoder is unfrozen, we create the optimizer
if not self.hparams.wav2vec2.freeze:
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
self.modules.wav2vec2.parameters()
)
if self.checkpointer is not None:
self.checkpointer.add_recoverable(
"wav2vec_opt", self.wav2vec_optimizer
)
self.model_optimizer = self.hparams.model_opt_class(
self.hparams.model.parameters()
)
if self.checkpointer is not None:
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
def zero_grad(self, set_to_none=False):
if not self.hparams.wav2vec2.freeze:
self.wav2vec_optimizer.zero_grad(set_to_none)
self.model_optimizer.zero_grad(set_to_none)
from speechbrain.pretrained import EncoderASR,EncoderDecoderASR
french_asr_model = EncoderASR.from_hparams(source="asr-wav2vec2-commonvoice-fr", savedir="pretrained_models/asr-wav2vec2-commonvoice-fr").cuda()
french_asr_model.to("cpu")
cvhparams_file, cvrun_opts, cvoverrides = sb.parse_arguments(["EnglishCV/train_en_with_wav2vec.yaml"])
with open(cvhparams_file) as cvfin:
cvhparams = load_hyperpyyaml(cvfin, cvoverrides)
english_asr_model = ASRCV(
modules=cvhparams["modules"],
hparams=cvhparams,
run_opts=cvrun_opts,
checkpointer=cvhparams["checkpointer"],
)
english_asr_model.modules.to("cpu")
english_asr_model.checkpointer.recover_if_possible()
print("moving to tunisian model")
asr_brain = ASR(
modules=hparams["modules"],
hparams=hparams,
run_opts=run_opts,
checkpointer=hparams["checkpointer"],
)
asr_brain.modules.to("cpu")
asr_brain.checkpointer.recover_if_possible()
asr_brain.modules.eval()
english_asr_model.modules.eval()
french_asr_model.mods.eval()
asr_brain.modules.to("cpu")
# Commented out IPython magic to ensure Python compatibility.
# %ls
#UTILS FUNCTIOJNS
def get_size_dimensions(arr):
size_dimensions = []
while isinstance(arr, list):
size_dimensions.append(len(arr))
arr = arr[0]
return size_dimensions
def scale_array(batch,n):
scaled_batch = []
for array in batch:
if(n < len(array)): raise ValueError("Cannot scale Array down")
repeat = round(n/len(array))+1
scaled_length_array= []
for i in array:
for j in range(repeat) :
if(len(scaled_length_array) == n): break
scaled_length_array.append(i)
scaled_batch.append(scaled_length_array)
return torch.tensor(scaled_batch)
def load_paths(wavs_path):
waveforms = []
for path in wavs_path :
waveform, _ = torchaudio.load(path)
waveforms.append(waveform.squeeze(0))
# normalize array length to the bigger arrays by pading with 0's
padded_arrays = pad_sequence(waveforms, batch_first=True)
return torch.tensor(padded_arrays)
device = 'cuda'
verbose = 0
#FLOW LEVEL FUNCTIONS
def merge_strategy(embeddings1, embeddings2, embeddings3,post1, post2,post3):
post1 = post1.to(device)
post2 = post2.to(device)
post3 = post3.to(device)
embeddings1 = embeddings1.to(device)
embeddings2 = embeddings2.to(device)
embeddings3 = embeddings3.to(device)
posteriograms_merged = torch.cat((post1,post2,post3),dim=2)
embeddings_merged = torch.cat((embeddings1,embeddings2,embeddings3),dim=2)
if(verbose !=0):
print('MERGED POST ',posteriograms_merged.shape)
print('MERGED emb ',embeddings_merged.shape)
return torch.cat((posteriograms_merged,embeddings_merged),dim=2).to(device)
def decode(model,wavs,wav_lens):
with torch.no_grad():
wav_lens = wav_lens.to(model.device)
encoder_out = model.encode_batch(wavs, wav_lens)
predictions = model.decoding_function(encoder_out, wav_lens)
return predictions
def middle_layer(batch, lens):
tn_embeddings, tn_posteriogram = asr_brain.custom_encode(batch,None)
fr_embeddings = french_asr_model.mods.encoder.wav2vec2(batch)
fr_posteriogram =french_asr_model.encode_batch(batch,lens)
en_embeddings = english_asr_model.modules.wav2vec2(batch, lens)
x = english_asr_model.modules.enc(en_embeddings)
en_posteriogram = english_asr_model.modules.ctc_lin(x)
#scores, en_posteriogram = english_asr_model.mods.decoder(en_embeddings ,lens)
if(verbose !=0):
print('[EMBEDDINGS] FR:',fr_embeddings.shape, "EN:",en_embeddings.shape, "TN:", tn_embeddings.shape)
print('[POSTERIOGRAM] FR:',fr_posteriogram.shape, "EN:",en_posteriogram.shape,"TN:",tn_posteriogram.shape)
bilangual_sample = merge_strategy(fr_embeddings,en_embeddings,tn_embeddings,fr_posteriogram,en_posteriogram,tn_posteriogram)
return bilangual_sample
class Mixer(sb.core.Brain):
def compute_forward(self, batch, stage):
"""Forward computations from the waveform batches to the output probabilities."""
wavs, wav_lens = batch.sig
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
if stage == sb.Stage.TRAIN:
if hasattr(self.hparams, "augmentation"):
wavs = self.hparams.augmentation(wavs, wav_lens)
multi_langual_feats = middle_layer(wavs, wav_lens)
multi_langual_feats= multi_langual_feats.to(device)
feats, _ = self.modules.enc(multi_langual_feats)
logits = self.modules.ctc_lin(feats)
p_ctc = self.hparams.log_softmax(logits)
if stage!= sb.Stage.TRAIN:
p_tokens = sb.decoders.ctc_greedy_decode(
p_ctc, wav_lens, blank_id=self.hparams.blank_index
)
else :
p_tokens = None
return p_ctc, wav_lens, p_tokens
def treat_wav(self,sig):
multi_langual_feats = middle_layer(sig.to("cpu"), torch.tensor([1]).to("cpu"))
multi_langual_feats= multi_langual_feats.to(device)
feats, _ = self.modules.enc(multi_langual_feats)
logits = self.modules.ctc_lin(feats)
p_ctc = self.hparams.log_softmax(logits)
predicted_words =[]
for logs in p_ctc:
text = decoder.decode(logs.detach().cpu().numpy())
predicted_words.append(text.split(" "))
return " ".join(predicted_words[0])
def compute_objectives(self, predictions, batch, stage):
"""Computes the loss (CTC) given predictions and targets."""
p_ctc, wav_lens , predicted_tokens= predictions
ids = batch.id
tokens, tokens_lens = batch.tokens
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
if stage == sb.Stage.VALID:
predicted_words = [
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
for utt_seq in predicted_tokens
]
target_words = [wrd.split(" ") for wrd in batch.wrd]
self.wer_metric.append(ids, predicted_words, target_words)
self.cer_metric.append(ids, predicted_words, target_words)
if stage ==sb.Stage.TEST :
if self.hparams.language_modelling:
predicted_words = []
for logs in p_ctc:
text = decoder.decode(logs.detach().cpu().numpy())
predicted_words.append(text.split(" "))
else :
predicted_words = [
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
for utt_seq in predicted_tokens
]
target_words = [wrd.split(" ") for wrd in batch.wrd]
self.wer_metric.append(ids, predicted_words, target_words)
self.cer_metric.append(ids, predicted_words, target_words)
return loss
def fit_batch(self, batch):
"""Train the parameters given a single batch in input"""
should_step = self.step % self.grad_accumulation_factor == 0
# Managing automatic mixed precision
# TOFIX: CTC fine-tuning currently is unstable
# This is certainly due to CTC being done in fp16 instead of fp32
if self.auto_mix_prec:
with torch.cuda.amp.autocast():
with self.no_sync():
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
with self.no_sync(not should_step):
self.scaler.scale(
loss / self.grad_accumulation_factor
).backward()
if should_step:
self.scaler.unscale_(self.model_optimizer)
if self.check_gradients(loss):
self.scaler.step(self.model_optimizer)
self.scaler.update()
self.zero_grad()
self.optimizer_step += 1
else:
# This is mandatory because HF models have a weird behavior with DDP
# on the forward pass
with self.no_sync():
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
with self.no_sync(not should_step):
(loss / self.grad_accumulation_factor).backward()
if should_step:
if self.check_gradients(loss):
self.model_optimizer.step()
self.zero_grad()
self.optimizer_step += 1
self.on_fit_batch_end(batch, outputs, loss, should_step)
return loss.detach().cpu()
def evaluate_batch(self, batch, stage):
"""Computations needed for validation/test batches"""
predictions = self.compute_forward(batch, stage=stage)
with torch.no_grad():
loss = self.compute_objectives(predictions, batch, stage=stage)
return loss.detach()
def on_stage_start(self, stage, epoch):
"""Gets called at the beginning of each epoch"""
if stage != sb.Stage.TRAIN:
self.cer_metric = self.hparams.cer_computer()
self.wer_metric = self.hparams.error_rate_computer()
def on_stage_end(self, stage, stage_loss, epoch):
"""Gets called at the end of an epoch."""
# Compute/store important stats
stage_stats = {"loss": stage_loss}
if stage == sb.Stage.TRAIN:
self.train_stats = stage_stats
else:
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
# Perform end-of-iteration things, like annealing, logging, etc.
if stage == sb.Stage.VALID:
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
stage_stats["loss"]
)
sb.nnet.schedulers.update_learning_rate(
self.model_optimizer, new_lr_model
)
self.hparams.train_logger.log_stats(
stats_meta={
"epoch": epoch,
"lr_model": old_lr_model,
},
train_stats=self.train_stats,
valid_stats=stage_stats,
)
self.checkpointer.save_and_keep_only(
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
)
elif stage == sb.Stage.TEST:
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
test_stats=stage_stats,
)
with open(self.hparams.wer_file, "w") as w:
self.wer_metric.write_stats(w)
def init_optimizers(self):
self.model_optimizer = self.hparams.model_opt_class(
self.hparams.model.parameters()
)
if self.checkpointer is not None:
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
def zero_grad(self, set_to_none=False):
self.model_optimizer.zero_grad(set_to_none)
hparams_file, run_opts, overrides = sb.parse_arguments(["cs.yaml"])
# If distributed_launch=True then
# create ddp_group with the right communication protocol
sb.utils.distributed.ddp_init_group(run_opts)
with open(hparams_file) as fin:
hparams = load_hyperpyyaml(fin, overrides)
# Create experiment directory
sb.create_experiment_directory(
experiment_directory=hparams["output_folder"],
hyperparams_to_save=hparams_file,
overrides=overrides,
)
def read_labels_file(labels_file):
with open(labels_file, "r",encoding="utf-8") as lf:
lines = lf.read().splitlines()
division = "==="
numbers = {}
for line in lines :
if division in line :
break
string, number = line.split("=>")
number = int(number)
string = string[1:-2]
numbers[number] = string
return [numbers[x] for x in range(len(numbers))]
label_encoder = sb.dataio.encoder.CTCTextEncoder()
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
special_labels = {
"blank_label": hparams["blank_index"],
"unk_label": hparams["unk_index"]
}
label_encoder.load_or_create(
path=lab_enc_file,
from_didatasets=[[]],
output_key="char_list",
special_labels=special_labels,
sequence_input=True,
)
labels = read_labels_file(os.path.join(hparams["save_folder"], "label_encoder.txt"))
labels = [""] + labels[1:-1] + ["1"]
if hparams["language_modelling"]:
decoder = build_ctcdecoder(
labels,
kenlm_model_path=hparams["ngram_lm_path"], # either .arpa or .bin file
alpha=0.5, # tuned on a val set
beta=1, # tuned on a val set
)
mixer = Mixer(
modules=hparams["modules"],
hparams=hparams,
run_opts=run_opts,
checkpointer=hparams["checkpointer"],
)
mixer.tokenizer = label_encoder
mixer.checkpointer.recover_if_possible()
mixer.modules.eval()
label_encoder = sb.dataio.encoder.CTCTextEncoder()
# We dynamicaly add the tokenizer to our brain class.
# NB: This tokenizer corresponds to the one used for the LM!!
decoder = build_ctcdecoder(
labels,
kenlm_model_path= "arpas/everything.arpa", # either .arpa or .bin file
alpha=0.5, # tuned on a val set
beta=1, # tuned on a val set
)
run_opts["device"]="cpu"
device = "cpu"
mixer.device= "cpu"
mixer.modules.to("cpu")
from enum import Enum, auto
class Stage(Enum):
TRAIN = auto()
VALID = auto()
TEST = auto()
asr_brain.on_evaluate_start()
asr_brain.modules.eval()
import gradio as gr
def treat_wav_file(file_mic,file_upload ,asr=mixer, device="cpu") :
if (file_mic is not None) and (file_upload is not None):
warn_output = "WARNING: You've uploaded an audio file and used the microphone. The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
wav = file_mic
elif (file_mic is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
elif file_mic is not None:
wav = file_mic
else:
wav = file_upload
sig, sr = torchaudio.load(wav)
tensor_wav = sig.to(device)
resampled = torchaudio.functional.resample( tensor_wav, sr, 16000)
sentence = asr.treat_wav(resampled)
return sentence
gr.Interface(
fn=treat_wav_file,
inputs=[gr.Audio(source="microphone", type='filepath', label = "record", optional = True),
gr.Audio(source="upload", type='filepath', label="filein", optional=True)]
,outputs="text").launch()
|