attr_classification / README.md
Sakuna's picture
Sakuna/attribute_classification
e7efcde verified
|
raw
history blame
1.71 kB
metadata
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: attr_classification
    results: []

attr_classification

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2170
  • Precision: 0.9359
  • Recall: 0.9574
  • F1: 0.9465
  • Accuracy: 0.9575

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 139 0.2243 0.9251 0.9311 0.9281 0.9475
No log 2.0 278 0.2090 0.9268 0.9541 0.9402 0.9525
No log 3.0 417 0.2170 0.9359 0.9574 0.9465 0.9575

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.19.1