File size: 1,709 Bytes
e7efcde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: attr_classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# attr_classification
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2170
- Precision: 0.9359
- Recall: 0.9574
- F1: 0.9465
- Accuracy: 0.9575
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 139 | 0.2243 | 0.9251 | 0.9311 | 0.9281 | 0.9475 |
| No log | 2.0 | 278 | 0.2090 | 0.9268 | 0.9541 | 0.9402 | 0.9525 |
| No log | 3.0 | 417 | 0.2170 | 0.9359 | 0.9574 | 0.9465 | 0.9575 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.15.0
- Tokenizers 0.19.1
|