Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- HuggingFaceH4/CodeAlpaca_20K
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
library_name: transformers
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
tags:
|
9 |
+
- code
|
10 |
+
- LLaMa2
|
11 |
+
---
|
12 |
+
|
13 |
+
# LLaMaCoder
|
14 |
+
|
15 |
+
## Model Description
|
16 |
+
|
17 |
+
`LLaMaCoder` is based on LLaMa2 7B language model, finetuned using LoRA adaptors.
|
18 |
+
|
19 |
+
## Usage
|
20 |
+
|
21 |
+
Generate code with LLaMaCoder in 4bit model according to the following python snippet:
|
22 |
+
|
23 |
+
```python
|
24 |
+
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer
|
25 |
+
import torch
|
26 |
+
|
27 |
+
MODEL_NAME = "Sakuna/LLaMaCoderAll"
|
28 |
+
device = "cuda:0"
|
29 |
+
|
30 |
+
|
31 |
+
bnb_config = BitsAndBytesConfig(
|
32 |
+
load_in_4bit=True,
|
33 |
+
bnb_4bit_quant_type="nf4",
|
34 |
+
bnb_4bit_compute_dtype=torch.float16,
|
35 |
+
)
|
36 |
+
|
37 |
+
model = AutoModelForCausalLM.from_pretrained(
|
38 |
+
MODEL_NAME,
|
39 |
+
quantization_config=bnb_config,
|
40 |
+
trust_remote_code=True
|
41 |
+
)
|
42 |
+
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
44 |
+
tokenizer.pad_token = tokenizer.eos_token
|
45 |
+
|
46 |
+
model = model.to(device)
|
47 |
+
model.eval()
|
48 |
+
|
49 |
+
prompt = "Write a Java program to calculate the factorial of a given number k"
|
50 |
+
input = f"{prompt}\n### Solution:\n"
|
51 |
+
device = "cuda:0"
|
52 |
+
|
53 |
+
inputs = tokenizer(input, return_tensors="pt").to(device)
|
54 |
+
outputs = model.generate(**inputs, max_length=256, temperature=0.7)
|
55 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
56 |
+
```
|