EvoLLM-JP-v1-7B / README.md
mkshing's picture
Update README.md
5e9ca93 verified
|
raw
history blame
3.23 kB
---
library_name: transformers
license: other
language:
- ja
---
# EvoLLM-JP
<!-- Provide a quick summary of what the model is/does. -->
EvoLLM-JP is a evolved Japanese Math LLM.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [Sakana AI](https://sakana.ai/)
- **Model type:** Autoregressive Language Model
- **Language(s):** Japanese
- **License:** [MICROSOFT RESEARCH LICENSE TERMS](./LICENSE)
- **Base models for merge:**
- [augmxnt/shisa-gamma-7b-v1](https://huggingface.co/augmxnt/shisa-gamma-7b-v1)
- [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1)
- [GAIR/Abel-7B-002](https://huggingface.co/GAIR/Abel-7B-002)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** [SakanaAI/evolving-merged-models](https://github.com/SakanaAI/evolving-merged-models)
- **Paper:** TODO
- **Blog:** TODO
## Usage
Use the code below to get started with the model.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# 1. load model
device = "cuda" if torch.cuda.is_available() else "CPU"
repo_id = "SakanaAI/EvoLLM-JP"
model = AutoModelForCausalLM.from_pretrained(repo_id, torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(repo_id)
model.to(device)
# 2. prepare inputs
template = """以下に、あるタスクを説明する指示があります。リクエストを適切に完了するための回答を日本語で記述してください。一歩一歩考えましょう。
### 指示:
{input}
### 応答:"""
text = "ミシュカは半ズボンを3本、長ズボンを3本、靴を3足買いました。半ズボンは1本$16.50でした。長ズボンは1本$22.50で、靴は1足$42でした。すべての衣類にいくら使いましたか?"
inputs = tokenizer(template.format(input=text), return_tensors="pt")
# 3. generate
output_ids = model.generate(**inputs.to(device))
output_ids = output_ids[:, inputs.input_ids.shape[1] :]
generated_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
print(generated_text)
```
## Evaluation
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## Citation
```bibtex
```