How to use
Requirements
Transformers require transformers
and sentencepiece
, both of which can be
installed using pip
.
pip install transformers sentencepiece
Pipelines 🚀
In case you are not familiar with Transformers, you can use pipelines instead.
Note that, pipelines can't have no answer for the questions.
from transformers import pipeline
model_name = "SajjadAyoubi/lm-roberta-large-fa-qa"
qa_pipeline = pipeline("question-answering", model=model_name, tokenizer=model_name)
text = "سلام من سجاد ایوبی هستم ۲۰ سالمه و به پردازش زبان طبیعی علاقه دارم"
questions = ["اسمم چیه؟", "چند سالمه؟", "به چی علاقه دارم؟"]
for question in questions:
print(qa_pipeline({"context": text, "question": question}))
>>> {'score': 0.4839823544025421, 'start': 8, 'end': 18, 'answer': 'سجاد ایوبی'}
>>> {'score': 0.3747948706150055, 'start': 24, 'end': 32, 'answer': '۲۰ سالمه'}
>>> {'score': 0.5945395827293396, 'start': 38, 'end': 55, 'answer': 'پردازش زبان طبیعی'}
Manual approach 🔥
Using the Manual approach, it is possible to have no answer with even better performance.
- PyTorch
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
from src.utils import AnswerPredictor
model_name = "SajjadAyoubi/lm-roberta-large-fa-qa"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
text = "سلام من سجاد ایوبی هستم ۲۰ سالمه و به پردازش زبان طبیعی علاقه دارم"
questions = ["اسمم چیه؟", "چند سالمه؟", "به چی علاقه دارم؟"]
# this class is from src/utils.py and you can read more about it
predictor = AnswerPredictor(model, tokenizer, device="cpu", n_best=10)
preds = predictor(questions, [text] * 3, batch_size=3)
for k, v in preds.items():
print(v)
Produces an output such below:
100%|██████████| 1/1 [00:00<00:00, 3.56it/s]
{'score': 8.040637016296387, 'text': 'سجاد ایوبی'}
{'score': 9.901972770690918, 'text': '۲۰'}
{'score': 12.117212295532227, 'text': 'پردازش زبان طبیعی'}
- TensorFlow 2.X
from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering
from src.utils import TFAnswerPredictor
model_name = "SajjadAyoubi/lm-roberta-large-fa-qa"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = TFAutoModelForQuestionAnswering.from_pretrained(model_name)
text = "سلام من سجاد ایوبی هستم ۲۰ سالمه و به پردازش زبان طبیعی علاقه دارم"
questions = ["اسمم چیه؟", "چند سالمه؟", "به چی علاقه دارم؟"]
# this class is from src/utils.py, you can read more about it
predictor = TFAnswerPredictor(model, tokenizer, n_best=10)
preds = predictor(questions, [text] * 3, batch_size=3)
for k, v in preds.items():
print(v)
Produces an output such below:
100%|██████████| 1/1 [00:00<00:00, 3.56it/s]
{'score': 8.040637016296387, 'text': 'سجاد ایوبی'}
{'score': 9.901972770690918, 'text': '۲۰'}
{'score': 12.117212295532227, 'text': 'پردازش زبان طبیعی'}
Or you can access the whole demonstration using HowToUse iPython Notebook on Google Colab