File size: 28,584 Bytes
423452e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@10
widget:
- source_sentence: The Gross Merchandise Sales (GMS) decreased by 1.2% in 2023 compared
    to 2022.
  sentences:
  - What specific matters did the CFPB investigate concerning Equifax?
  - What was the percentage decline in GMS for the year ended December 31, 2023 compared
    to 2022?
  - What percentage of eBay's 2023 net revenues were attributed to international markets?
- source_sentence: Asset management and administration fees vary with changes in the
    balances of client assets due to market fluctuations and client activity.
  sentences:
  - Why was there a net outflow of cash in financing activities in fiscal 2022?
  - How do asset management and administration fees vary at The Charles Schwab Corporation?
  - What are some key goals of the corporation related to climate change?
- source_sentence: Operating profit margin was 19.3 percent in 2023, compared with
    13.3 percent in 2022.
  sentences:
  - What was the operating profit margin for 2023?
  - How do the studios compete in the entertainment industry?
  - What types of audio products does Garmin's Fusion and JL Audio brands offer?
- source_sentence: Subsequent to 2023, on February 12, 2024, AbbVie borrowed $5.0
    billion under the term loan credit agreement.
  sentences:
  - What percentage of U.S. dialysis patient service revenues in 2023 came from Medicare
    and Medicare Advantage plans?
  - What is Peloton Interactive, Inc. known for in the interactive fitness industry?
  - What was the purpose stated by AbbVie for borrowing $5.0 billion under the term
    loan credit agreement on February 12, 2024?
- source_sentence: Chipotle retains an independent third-party compensation consultant
    each year to conduct a pay equity analysis of its U.S. and Canadian workforce,
    including factors of pay such as grade level, tenure in role, and external market
    conditions like geographic location, to ensure consistency and equitable treatment
    among employees.
  sentences:
  - How does Chipotle ensure pay equity among its employees?
  - How can one locate information on legal proceedings within the Consolidated Financial
    Statements?
  - What criteria did the independent audit use to assess the effectiveness of internal
    control over financial reporting at the company?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.6985714285714286
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8342857142857143
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8628571428571429
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6985714285714286
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27809523809523806
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17257142857142854
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08999999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6985714285714286
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8342857142857143
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8628571428571429
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8029099239677612
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.771475056689342
      name: Cosine Mrr@10
    - type: cosine_map@10
      value: 0.7714750566893424
      name: Cosine Map@10
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.6842857142857143
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8271428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8628571428571429
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8928571428571429
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6842857142857143
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2757142857142857
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17257142857142854
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08928571428571427
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6842857142857143
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8271428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8628571428571429
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8928571428571429
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7942762197573711
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7620697278911563
      name: Cosine Mrr@10
    - type: cosine_map@10
      value: 0.7620697278911566
      name: Cosine Map@10
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.6871428571428572
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8157142857142857
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8614285714285714
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8928571428571429
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6871428571428572
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27190476190476187
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17228571428571426
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08928571428571427
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6871428571428572
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8157142857142857
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8614285714285714
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8928571428571429
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7935865448697424
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7613917233560088
      name: Cosine Mrr@10
    - type: cosine_map@10
      value: 0.7613917233560091
      name: Cosine Map@10
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6757142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8171428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8514285714285714
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8814285714285715
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6757142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2723809523809524
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17028571428571426
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08814285714285712
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6757142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8171428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8514285714285714
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8814285714285715
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7842926561068588
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7525731292517003
      name: Cosine Mrr@10
    - type: cosine_map@10
      value: 0.7525731292517006
      name: Cosine Map@10
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.64
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.79
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8271428571428572
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.87
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.64
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2633333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1654285714285714
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.087
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.64
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.79
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8271428571428572
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.87
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7594704472459967
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7236507936507934
      name: Cosine Mrr@10
    - type: cosine_map@10
      value: 0.7236507936507937
      name: Cosine Map@10
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Sailesh9999/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'Chipotle retains an independent third-party compensation consultant each year to conduct a pay equity analysis of its U.S. and Canadian workforce, including factors of pay such as grade level, tenure in role, and external market conditions like geographic location, to ensure consistency and equitable treatment among employees.',
    'How does Chipotle ensure pay equity among its employees?',
    'How can one locate information on legal proceedings within the Consolidated Financial Statements?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6986     |
| cosine_accuracy@3   | 0.8343     |
| cosine_accuracy@5   | 0.8629     |
| cosine_accuracy@10  | 0.9        |
| cosine_precision@1  | 0.6986     |
| cosine_precision@3  | 0.2781     |
| cosine_precision@5  | 0.1726     |
| cosine_precision@10 | 0.09       |
| cosine_recall@1     | 0.6986     |
| cosine_recall@3     | 0.8343     |
| cosine_recall@5     | 0.8629     |
| cosine_recall@10    | 0.9        |
| cosine_ndcg@10      | 0.8029     |
| cosine_mrr@10       | 0.7715     |
| **cosine_map@10**   | **0.7715** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6843     |
| cosine_accuracy@3   | 0.8271     |
| cosine_accuracy@5   | 0.8629     |
| cosine_accuracy@10  | 0.8929     |
| cosine_precision@1  | 0.6843     |
| cosine_precision@3  | 0.2757     |
| cosine_precision@5  | 0.1726     |
| cosine_precision@10 | 0.0893     |
| cosine_recall@1     | 0.6843     |
| cosine_recall@3     | 0.8271     |
| cosine_recall@5     | 0.8629     |
| cosine_recall@10    | 0.8929     |
| cosine_ndcg@10      | 0.7943     |
| cosine_mrr@10       | 0.7621     |
| **cosine_map@10**   | **0.7621** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6871     |
| cosine_accuracy@3   | 0.8157     |
| cosine_accuracy@5   | 0.8614     |
| cosine_accuracy@10  | 0.8929     |
| cosine_precision@1  | 0.6871     |
| cosine_precision@3  | 0.2719     |
| cosine_precision@5  | 0.1723     |
| cosine_precision@10 | 0.0893     |
| cosine_recall@1     | 0.6871     |
| cosine_recall@3     | 0.8157     |
| cosine_recall@5     | 0.8614     |
| cosine_recall@10    | 0.8929     |
| cosine_ndcg@10      | 0.7936     |
| cosine_mrr@10       | 0.7614     |
| **cosine_map@10**   | **0.7614** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6757     |
| cosine_accuracy@3   | 0.8171     |
| cosine_accuracy@5   | 0.8514     |
| cosine_accuracy@10  | 0.8814     |
| cosine_precision@1  | 0.6757     |
| cosine_precision@3  | 0.2724     |
| cosine_precision@5  | 0.1703     |
| cosine_precision@10 | 0.0881     |
| cosine_recall@1     | 0.6757     |
| cosine_recall@3     | 0.8171     |
| cosine_recall@5     | 0.8514     |
| cosine_recall@10    | 0.8814     |
| cosine_ndcg@10      | 0.7843     |
| cosine_mrr@10       | 0.7526     |
| **cosine_map@10**   | **0.7526** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.64       |
| cosine_accuracy@3   | 0.79       |
| cosine_accuracy@5   | 0.8271     |
| cosine_accuracy@10  | 0.87       |
| cosine_precision@1  | 0.64       |
| cosine_precision@3  | 0.2633     |
| cosine_precision@5  | 0.1654     |
| cosine_precision@10 | 0.087      |
| cosine_recall@1     | 0.64       |
| cosine_recall@3     | 0.79       |
| cosine_recall@5     | 0.8271     |
| cosine_recall@10    | 0.87       |
| cosine_ndcg@10      | 0.7595     |
| cosine_mrr@10       | 0.7237     |
| **cosine_map@10**   | **0.7237** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 46.55 tokens</li><li>max: 439 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.43 tokens</li><li>max: 46 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                           | anchor                                                                                                                                     |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Americas | $ | 7,631,647 | | | $ | 6,817,454 | | 79.3 | % | 84.1 | %</code>                                                                                  | <code>What was the proportion of Americas' net revenue to the company's total net revenue in 2023, and how did it change from 2022?</code> |
  | <code>Item 1 Business typically includes detailed information about the organization's operations, the nature of the business, and its strategic direction.</code> | <code>What is the title of the section that potentially discusses the operations or nature of a business in a document?</code>             |
  | <code>Operating expenses as a percentage of total revenues decreased to 15.3% in 2023 compared to 15.9% in 2022.</code>                                            | <code>What was the operating expenses as a percentage of total revenues in 2023?</code>                                                    |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_128_cosine_map@10 | dim_256_cosine_map@10 | dim_512_cosine_map@10 | dim_64_cosine_map@10 | dim_768_cosine_map@10 |
|:----------:|:------:|:-------------:|:---------------------:|:---------------------:|:---------------------:|:--------------------:|:---------------------:|
| 0.8122     | 10     | 1.5638        | -                     | -                     | -                     | -                    | -                     |
| 0.9746     | 12     | -             | 0.7308                | 0.7547                | 0.7547                | 0.7004               | 0.7624                |
| 1.6244     | 20     | 0.6662        | -                     | -                     | -                     | -                    | -                     |
| 1.9492     | 24     | -             | 0.7468                | 0.7586                | 0.7624                | 0.7195               | 0.7655                |
| 2.4365     | 30     | 0.4634        | -                     | -                     | -                     | -                    | -                     |
| 2.9239     | 36     | -             | 0.7525                | 0.7620                | 0.7614                | 0.7237               | 0.7717                |
| 3.2487     | 40     | 0.387         | -                     | -                     | -                     | -                    | -                     |
| **3.8985** | **48** | **-**         | **0.7526**            | **0.7614**            | **0.7621**            | **0.7237**           | **0.7715**            |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.9.18
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.29.3
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->