File size: 2,557 Bytes
9b16b6f
 
 
 
 
 
 
 
 
22ee0d0
9b16b6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5597c5
 
 
 
9b16b6f
 
 
 
 
 
 
 
 
 
bb6b6cb
9b16b6f
8f7c374
 
 
 
9b16b6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22ee0d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
language:
- sr
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Medium cmb
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 13
      type: mozilla-foundation/common_voice_13_0
      config: sr
      split: test
      args: sr
    metrics:
    - name: Wer
      type: wer
      value: 0.0658123370981755
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Update

Use an updated fine tunned version [Sagicc/whisper-medium-sr-v2](https://huggingface.co/Sagicc/whisper-medium-sr-v2) with new 10+ hours of dataset.

# Whisper Medium cmb

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 13 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1374
- Wer Ortho: 0.1589
- Wer: 0.0658

## Model description

This is a fine tunned on merged datasets Common Voice 13 + Fleurs + [Juzne vesti (South news)](http://hdl.handle.net/11356/1679) 

Rupnik, Peter and Ljubešić, Nikola, 2022,\
  ASR training dataset for Serbian JuzneVesti-SR v1.0, Slovenian language resource repository CLARIN.SI, ISSN 2820-4042,\
  http://hdl.handle.net/11356/1679.

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 1500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 0.342         | 0.48  | 500  | 0.1604          | 0.1863    | 0.0862 |
| 0.3454        | 0.95  | 1000 | 0.1388          | 0.1589    | 0.0667 |
| 0.2247        | 1.43  | 1500 | 0.1374          | 0.1589    | 0.0658 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.1