|
--- |
|
library_name: transformers |
|
license: other |
|
base_model: saves/Yi-1.5-9B-pt-241124 |
|
tags: |
|
- llama-factory |
|
- full |
|
- generated_from_trainer |
|
model-index: |
|
- name: Yi-1.5-9B-sft-241128 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Yi-1.5-9B-sft-241128 |
|
|
|
This model is a fine-tuned version of [saves/Yi-1.5-9B-pt-241124](https://huggingface.co/saves/Yi-1.5-9B-pt-241124) on the chinese-medical-dialogue, the CMB, the cMedQA2, the CMExam, the CMtMedQA, the COIG-CQIA-full, the COIG_full, the HuatuoGPT_sft_data_v, the huatuo_encyclopedia_q, the huatuo_lite, the imcs21, the Med-single-choice, the Medical_dialogue_system_en_single_turn, the qizhengpt-sft-20, the self_cognition, the sharegpt_zh_38K_format, the shennong, the shibing642-medica, the tigerbot_sft_data, the xywy-KG and the zhongyi-zhiku datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4478 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2.5e-06 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 2.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:-----:|:---------------:| |
|
| 1.6544 | 0.1277 | 1000 | 1.6105 | |
|
| 1.5595 | 0.2554 | 2000 | 1.5668 | |
|
| 1.5297 | 0.3830 | 3000 | 1.5394 | |
|
| 1.5637 | 0.5107 | 4000 | 1.5188 | |
|
| 1.5051 | 0.6384 | 5000 | 1.5028 | |
|
| 1.4765 | 0.7661 | 6000 | 1.4895 | |
|
| 1.4504 | 0.8938 | 7000 | 1.4779 | |
|
| 1.4084 | 1.0215 | 8000 | 1.4716 | |
|
| 1.4292 | 1.1491 | 9000 | 1.4653 | |
|
| 1.4349 | 1.2768 | 10000 | 1.4597 | |
|
| 1.4442 | 1.4045 | 11000 | 1.4548 | |
|
| 1.422 | 1.5322 | 12000 | 1.4517 | |
|
| 1.3986 | 1.6599 | 13000 | 1.4491 | |
|
| 1.3949 | 1.7875 | 14000 | 1.4482 | |
|
| 1.4241 | 1.9152 | 15000 | 1.4478 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|