File size: 4,915 Bytes
9f9a082 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
#!/usr/bin/env python3
import json
from pathlib import Path
import re
import torch
from transformers import AutoTokenizer, Gemma3ForCausalLM
from nltk.translate.bleu_score import corpus_bleu, SmoothingFunction
from tqdm import tqdm
import os
import torch._dynamo
torch._dynamo.config.suppress_errors = True
torch.set_float32_matmul_precision('high') # Also address the warning you saw
# βββ CONFIG βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
SRC_LANG, TGT_LANG = "en", "kk"
MODEL_PATH = "/raid/srp_base_model_training/abai_workspace/models/sync_kk_en/checkpoint-final"
TEST_FILE = "/raid/srp_base_model_training/abai_workspace/data/flores/en_to_kk_formatted.jsonl" # JSONL with fields system,user,assistant
OUTPUT_JSON = f"eval_sync_KKEN_data_{SRC_LANG}_to_{TGT_LANG}.json"
MAX_NEW_TOKS = 64
os.environ["CUDA_VISIBLE_DEVICES"] = "2,3,4,5" # specify your GPU IDs here
DEVICE = "cuda" # or "cpu"
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Add this helper near the top
def clean_user_field(user_str: str) -> str:
"""
Remove leading <src=xx><tgt=yy> tags and any whitespace/newlines after them.
"""
# This pattern matches <src=..><tgt=..> plus any whitespace/newline
return re.sub(r'^<src=[^>]+><tgt=[^>]+>\s*', '', user_str)
def load_model_and_tokenizer():
print(f"Loading model/tokenizer from {MODEL_PATH} β¦")
tok = AutoTokenizer.from_pretrained(MODEL_PATH)
model = Gemma3ForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=torch.bfloat16,
device_map="auto", # autoβshard if you have multiple GPUs
)
model.eval()
return tok, model
def build_prompt(system: str, user: str) -> str:
return (
f"<start_of_turn>system\n{system}<end_of_turn>\n"
f"<start_of_turn>user\n{user}<end_of_turn>\n"
f"<start_of_turn>assistant"
)
def run_inference(tok, model, system: str, user: str) -> str:
prompt = build_prompt(system, user)
inputs = tok(prompt, return_tensors="pt", truncation=True).to(model.device)
input_len = inputs["input_ids"].shape[-1]
with torch.inference_mode():
out = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKS,
do_sample=False,
eos_token_id=tok.convert_tokens_to_ids("<end_of_turn>"),
pad_token_id=tok.eos_token_id,
)
gen_ids = out[0][input_len:]
return tok.decode(gen_ids, skip_special_tokens=True).strip()
def load_test_examples(path: str):
examples = []
for line in open(path, encoding="utf-8"):
obj = json.loads(line)
examples.append((obj["system"].strip(),
obj["user"].strip(),
obj["assistant"].strip()))
return examples
def evaluate_bleu_nltk(hyps, refs):
"""
Compute corpus-level 4-gram BLEU using NLTK.
- hyps: list of hypothesis strings
- refs: list of reference strings
Returns BLEU in percentage (e.g. 27.53).
"""
# 1) tokenize on whitespace
tokenized_hyps = [hyp.split() for hyp in hyps]
# NLTK expects a list of references per hypothesis
tokenized_refs = [[ref.split()] for ref in refs]
# 2) smoothing to avoid zero scores on short examples
smoothing = SmoothingFunction().method1
# 3) compute corpus_bleu with uniform 4-gram weights
score = corpus_bleu(
tokenized_refs,
tokenized_hyps,
weights=(0.25, 0.25, 0.25, 0.25),
smoothing_function=smoothing,
)
# convert to percentage
return round(score, 4)
def main():
tok, model = load_model_and_tokenizer()
examples = load_test_examples(TEST_FILE)
hyps, refs, users = [], [], []
for system, user, assistant in tqdm(examples, desc="Translating"):
clean_user = clean_user_field(user)
hyp = run_inference(tok, model, system, clean_user)
hyps.append(hyp)
refs.append(assistant)
users.append(clean_user) # collect cleaned user texts
bleu_score = evaluate_bleu_nltk(hyps, refs)
# Save results, using cleaned user strings
out = {
"model": MODEL_PATH,
"bleu": bleu_score,
"examples": []
}
for (s, _, r), u_clean, h in zip(examples, users, hyps):
out["examples"].append({
"system": s,
"user": u_clean, # no tags here
"reference": r,
"hypothesis": h
})
with open(OUTPUT_JSON, "w", encoding="utf-8") as f:
json.dump(out, f, ensure_ascii=False, indent=2)
print(f"β
Saved cleaned evaluation to {OUTPUT_JSON}")
if __name__ == "__main__":
main()
|