SLPL
/

File size: 4,468 Bytes
8b4523b
aab5371
 
876dff9
aab5371
 
 
1e2b39a
 
 
 
 
 
aab5371
 
 
 
 
 
 
876dff9
 
aab5371
 
 
 
 
 
 
 
8b4523b
aab5371
 
 
64fb33b
9603413
 
 
64fb33b
64771ba
 
55c34da
 
64771ba
 
5af33cd
b466f87
64771ba
 
 
 
 
 
f932e73
 
 
 
 
b96632b
64771ba
 
 
 
 
 
 
b466f87
64771ba
b466f87
 
 
64771ba
 
 
 
 
aab5371
feb891f
a585e5e
64fb33b
 
 
 
 
a585e5e
177ebd7
 
b2d9405
177ebd7
4a36ad9
177ebd7
4a36ad9
 
 
 
 
 
 
 
 
 
 
 
b8eb4fa
 
 
 
4a36ad9
 
 
 
 
 
 
 
 
 
 
 
b8eb4fa
 
 
4a36ad9
 
 
b8eb4fa
 
88fac87
b8eb4fa
4a36ad9
 
 
 
b2d9405
b8eb4fa
 
 
feb891f
64771ba
177ebd7
aab5371
177ebd7
 
 
828771f
 
 
 
 
 
 
884a340
 
 
 
9aba6da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
language: fa
datasets:
- common_voice_6_1
tags:
- audio
- automatic-speech-recognition
license: mit
widget:
- example_title: Common Voice Sample 1
  src: https://datasets-server.huggingface.co/assets/common_voice/--/fa/train/0/audio/audio.mp3
- example_title: Common Voice Sample 2
  src: https://datasets-server.huggingface.co/assets/common_voice/--/fa/train/1/audio/audio.mp3
model-index:
- name: Sharif-wav2vec2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice Corpus 6.1 (clean)
      type: common_voice_6_1
      config: clean
      split: test
      args: 
        language: fa
    metrics:
    - name: Test WER
      type: wer
      value: 6.0
---

# Sharif-wav2vec2

This is a fine-tuned version of Sharif Wav2vec2 for Farsi. The base model went through a fine-tuning process in which 108 hours of Commonvoice's Farsi samples with a sampling rate equal to 16kHz. Afterward, we trained a 5gram using [kenlm](https://github.com/kpu/kenlm) toolkit and used it in the processor which increased our accuracy on online ASR.

## Usage 

When using the model, ensure that your speech input is sampled at 16Khz. Prior to the usage, you may need to install the below dependencies:

```shell
pip install pyctcdecode
pip install pypi-kenlm
```

For testing, you can use the hosted inference API at the hugging face (There are provided examples from common-voice). It may take a while to transcribe the given voice; Or you can use the bellow code for a local run:

```python
import tensorflow
import torchaudio
import torch
import numpy as np

from transformers import AutoProcessor, AutoModelForCTC

processor = AutoProcessor.from_pretrained("SLPL/Sharif-wav2vec2")
model = AutoModelForCTC.from_pretrained("SLPL/Sharif-wav2vec2")

speech_array, sampling_rate = torchaudio.load("path/to/your.wav")
speech_array = speech_array.squeeze().numpy()

features = processor(
    speech_array,
    sampling_rate=processor.feature_extractor.sampling_rate,
    return_tensors="pt",
    padding=True)

with torch.no_grad():
    logits = model(
        features.input_values,
        attention_mask=features.attention_mask).logits
    prediction = processor.batch_decode(logits.numpy()).text

print(prediction[0])
# تست
```

## Evaluation

For the evaluation, you can use the code below. Ensure your dataset to be in following form in order to avoid any further conflict:

| path | reference|
|:----:|:--------:|
| path/to/audio_file.wav | "TRANSCRIPTION" |

also, make sure you have installed `pip install jiwer` prior to running.

```python
import tensorflow
import torchaudio
import torch
import librosa
from datasets import load_dataset,load_metric
import numpy as np
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from transformers import Wav2Vec2ProcessorWithLM

model = Wav2Vec2ForCTC.from_pretrained("SLPL/Sharif-wav2vec2") 
processor = Wav2Vec2ProcessorWithLM.from_pretrained("SLPL/Sharif-wav2vec2") 

def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    speech_array = speech_array.squeeze().numpy()
    speech_array = librosa.resample(
        np.asarray(speech_array),
        sampling_rate,
        processor.feature_extractor.sampling_rate)
    batch["speech"] = speech_array
    return batch

def predict(batch):
    features = processor(
        batch["speech"], 
        sampling_rate=processor.feature_extractor.sampling_rate, 
        return_tensors="pt", 
        padding=True
    )

    with torch.no_grad():
        logits = model(
            features.input_values,
            attention_mask=features.attention_mask).logits
    batch["prediction"] = processor.batch_decode(logits.numpy()).text
    return batch
    
dataset = load_dataset(
    "csv",
    data_files={"test":"dataset.eval.csv"},
    delimiter=",")["test"]
dataset = dataset.map(speech_file_to_array_fn)

result = dataset.map(predict, batched=True, batch_size=4)
wer = load_metric("wer")

print("WER: {:.2f}".format(wer.compute(
    predictions=result["prediction"],
    references=result["reference"])))
```

*Result (WER) on common-voice 6.1*:

| cleaned | other |
|:---:|:---:|
| 0.06 | 0.16 |


## Citation
If you want to cite this model you can use this:

```bibtex
?
```

### Contributions

Thanks to [@sarasadeghii](https://github.com/Sarasadeghii) and [@sadrasabouri](https://github.com/sadrasabouri) for adding this dataset.