File size: 847 Bytes
8582da9
 
e0c723a
 
8582da9
e0c723a
8582da9
 
6791451
8582da9
e0c723a
 
8582da9
 
 
bf7cdc9
 
 
 
 
 
 
e0c723a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
---
language:
- en
thumbnail: url to a thumbnail used in social sharing
tags:
- ArguGPT
license: mit
datasets:
- SJTU-CL/ArguGPT
metrics:
- accuracy
pipeline_tag: text-classification
---

# ArguGPT

RoBERTa-large finetuned on ArguGPT essays.

- label 1 for machine generated essays
- label 0 for human written essays

**Please truncate your input essay to 512 tokens**

## Citation

Please cite our work [arXiv:2304.07666](https://arxiv.org/abs/2304.07666) as  

```
@misc{liu2023argugpt,
      title={ArguGPT: evaluating, understanding and identifying argumentative essays generated by GPT models}, 
      author={Yikang Liu and Ziyin Zhang and Wanyang Zhang and Shisen Yue and Xiaojing Zhao and Xinyuan Cheng and Yiwen Zhang and Hai Hu},
      year={2023},
      eprint={2304.07666},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```