File size: 847 Bytes
8582da9 e0c723a 8582da9 e0c723a 8582da9 6791451 8582da9 e0c723a 8582da9 bf7cdc9 e0c723a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
---
language:
- en
thumbnail: url to a thumbnail used in social sharing
tags:
- ArguGPT
license: mit
datasets:
- SJTU-CL/ArguGPT
metrics:
- accuracy
pipeline_tag: text-classification
---
# ArguGPT
RoBERTa-large finetuned on ArguGPT essays.
- label 1 for machine generated essays
- label 0 for human written essays
**Please truncate your input essay to 512 tokens**
## Citation
Please cite our work [arXiv:2304.07666](https://arxiv.org/abs/2304.07666) as
```
@misc{liu2023argugpt,
title={ArguGPT: evaluating, understanding and identifying argumentative essays generated by GPT models},
author={Yikang Liu and Ziyin Zhang and Wanyang Zhang and Shisen Yue and Xiaojing Zhao and Xinyuan Cheng and Yiwen Zhang and Hai Hu},
year={2023},
eprint={2304.07666},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |