metadata
library_name: peft
tags:
- dpo
base_model: SGaleshchuk/Llama-2-13b-hf_uk_rank-32_ft
model-index:
- name: Llama-2-13b-summarization_uk_dpo
results: []
license: apache-2.0
datasets:
- SGaleshchuk/XL_SUM_ukr_synthetic_hallucinations
- csebuetnlp/xlsum
language:
- uk
metrics:
- rouge
pipeline_tag: summarization
Llama-2-13b-summarization_uk_dpo
This model is a fine-tuned version of SGaleshchuk/Llama-2-13b-hf_uk_rank-32_ft on summarization dataset.
Set-up step description
- Fine-tune Llama-2 model on training data
- Generate summaries using fine-tuned Llama-2 model on validation set
- Corrupt generated summaries by adding information not given in input text
- Align fine-tuned Llama-2 with golden summaries to choose and reject noisy synthetic text
- Apply both fine-tuned and aligned versions on test set
- Assess level of faithfulness hallucinations in generated texts using GPT-4 and Rouge-L, and human evaluation on a small subset
Intended uses & limitations
# tested with colab+A100 GPU
!pip install -q -U peft transformers==4.30
!pip install flash-attn --no-build-isolation
!pip install einops bitsandbytes accelerate
# unpatch flash attention
import torch
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
model_id = "SGaleshchuk/Llama-2-13b-summarization_uk_dpo"
# load base LLM model and tokenizer
model = AutoPeftModelForCausalLM.from_pretrained(
model_id,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
def prepare_instruction(text):
prompt = """The article to summarize in maximum 100 words:{text}. Summary:""" # adapt to your needs
return prompt.format(
text=text,
)
def summarization(text):
instruction = prepare_instruction(text)
input_ids = tokenizer(instruction, return_tensors="pt", truncation=True).input_ids.cuda()
with torch.inference_mode():
outputs = model.generate(
input_ids=input_ids,
max_new_tokens=128,
do_sample=True,
top_p=0.9,
temperature=1e-2,
)
result = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]
result = result[len(instruction) :]
print(result)
return result
text = """your text here to summarize"
result = summarization(text)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
Training results
Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2